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Editor in Chief’s Letter

It would be our great honor to have you as the readers of Journal of “Control and
Optimization in Applied Mathematics (COAM)”. The present journal is published and
supported by Payame Noor University (PNU) as a semi-annual journal. Our main
objective is to facilitate scientific regional and global discussions and collaborations
between specialists in different fields of applied mathematics, especially in the fields
of control and optimization. We hope that scholars and experts of different fields of
applied mathematics find our scientific journal a platform for international commu-
nications of insight and knowledge. To assure the respectful subscribers about high
quality of the journal, each article is reviewed by subject-qualified referees, the same
as any other well-known international journal of applied mathematics.We believe that
by publishing high quality and creative researches, we will observe more collaborations
with our journal. We kindly invite all applied mathematicians especially in the fields of
control and optimization, to join us by submitting their original works to the Journal
of “Control and Optimization in Applied Mathematics”. I want to thank the respectful
colleagues of COAM, as well as referees, reviewers, and editors for their kind dedication

and vision.
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Abstract. Guaranteed cost control (GCC) is an impressive method of
controlling nonlinear systems, incredibly uncertain switched systems. Most
of the recent studies of GCC on uncertain switched linear systems have been
concerned with asymptotic stability analysis. In this paper, a new robust
switching law for time-delay uncertain switched linear systems is designed.
First, the switching law is designed, and second, a state-feedback controller
based on Lyapunov-Krasovskii Functional (LKF) is designed. Also, using
Linear Matrix Inequality (LMI) particular condition for the existence of a
solution of obtained switching law and controller is achieved. Consequently,
in the presented theorems, the exponential stability of the overall system
under switching law and controller is analyzed. Finally, theoretical results are

verified via presenting an example.

Keywords. Uncertain switched linear systems, Time-delay, Guaranteed cost
control, LKF, LMI, Exponential stability.
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1 Introduction

Switched systems, as a wide class of hybrid systems, are divided into two classes of
systems: continuous and discrete-time subsystems. Generally, there is a switching
strategy that selects a subsystem between other subsystems. In recent years, switching
theory and its application have been extended to adaptive control to overcome dis-
advantages in the system’s stability, where there are some difficulties in the proof of
stability [1, 2, 3, 4, 5]. Some important problems in the concept of design procedures
and stability analysis of switched systems have illustrated in [6].

There are many approaches in switched systems especially, looking for suitable
switching; to stabilize the system even when the systems are unstable [7]. Also,
dwell-time and its average concept have been studied for stabilization problems in the
switched system with especial switching strategy has been performed [8, 6]. In recent
past decades, time-delay systems have been concerned with expert researchers. These
kinds of systems have many applications in electronics systems, transmission systems,
chemical process systems, and power systems and, so on [9]. Delay mainly exists in some
sensors and measurement units and frequently occurs in control systems [10]. Gener-
ally, since sensors and transducers are used in control systems to measure all or some
important states, then, some delays may occur in these measurements. Switched sys-
tems with a time delay are a class of switched systems that has been focused on recent
researches. In most studies on the time-delay switched systems, delay with a certain
upper bound is assumed. Knowing such this upper bound can guarantee the stability
of these kinds of systems. In this area, some rigorous researches have been achieved in
recent years [11, 12, 13]. In [12], using Common Lyapunov Function (CLF), the stabil-
ity of switching systems composed some finite linear subsystems which are described
with time-delay differential equations has been performed. In [13], the Authors studied
sufficient conditions for asymptotic stability analysis of a class of switched linear sys-
tems. Moreover, many types of research in the field of switched systems concentrate on
the asymptotic behavior that reflects the system treatments in a limited interval time
[14, 15]. In the concept of control a plant, designing a controller must guarantee not
only the asymptotic stability of the system but also guarantee acceptable performance.
Considering a quadratic performance index is a solution to formulate this problem. This
method is named guaranteed cost control (GCC) [16]. In this approach, it is tried to
provide an upper bound for a given cost function in the presence of uncertainties, and,
based on this goal, the controller is designed [17, 18, 19, 20, 22]. Based on this approach,
some significant researches have been reported on this topic in [20, 21, 23, 24, 25]. Some
acceptable results have been reported for uncertain switched linear systems. In these

studies, using CLF or Multiple Lyapunov Functions (MLFs), switching laws and state
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feedback controllers are designed. Moreover, for switching strategy design, a subsystem
with minimum LF is chosen. When the switched system has only a switching signal to
be designed, this approach provides asymptotic or exponential stability. Especially, to
design switching laws using CLF, the designer must find some unknown matrices with
solving some complex Linear Matrix Inequalities (LMIs) to be constructed via some
theorems [26, 21, 23, 24, 25]. In more recent studies, some important researches on
the exponential stability analysis and design of GCC for time delay switched systems
has been performed [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 41, 42, 43, 44]. In [31],
using some extracted LMIs for switched time-delay systems, a sufficient condition for
exponential stability analysis and GCC problem with the weighted form is obtained.
Also, in [38] and based on dwell time and piecewise Lyapunov function approach ex-
ponential stability is studied, and its condition is derived. Besides, in [38], and based
on the LKF method, to guarantee exponential stability and obtain the upper bound of
the determined cost function, a new time delay condition is proposed. In this paper,
by considering a complete form of uncertain time-delay switched systems containing
delays both in states and control inputs, a new robust switching law is designed. To do
this, motivated by the min-projection switching strategy [39] and Lyapunov-Krasovskii
function (LKF), switching law and control are designed. The main contributions are

listed in the following:

(i) Designing a new robust switching law to guarantee exponential stability of the

switched system.

(ii) Proving that the proposed LKF satisfies the presented theorems.

Notation: Throughout the paper, m is an arbitrary positive integer that indicates the
number of switched system’s subsystems, and A(A) indicates eigenvalues of matrix A.

the notation P > 0 denotes that P is a positive definite matrix.

2 Problem Formulation and Preparations

In this paper, the following general form of time-delay uncertain switched linear system
is considered
X—(A (x,t) +AA (x,t) ) (t)+Adaxt (t_d)
+(B o(x,t) +AB xt) () (t—h),
x(t) = ¢(t), te[—ty 0], tog= max{d, h}, (1)

where, x(t) € R"” and u(t) € R1 are the state and control input vectors. d > 0 and

h > 0 are delay constants in the states and inputs and o(x,t) € m is switching signal
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which is piecewise constant that determines the active subsystem. A; € R"™", B; € R™4,
Ag; € R and W; € R™" i € m are subsystem matrices and AA; and AB;, i € m, are

additive uncertainties. The following notice shows the nature of uncertainties.

Notice 1. AA; and AB; in equation (1) are time-varying uncertain matrices and satisfy
the following condition

[AA; AB;]=N;F;[C; Dj], iem, (2)

where C;, D; and N; are known matrices and F;, i € m, are unknown matrices with

Lebesgue measurable elements such that the following inequality holds

FI(F(t)<I, iem. (3)

Throughout the paper, our goal is to minimize the following performance index for

the uncertain system (1)

J= Jw(xTQeruTRu)dt, (4)
0

where Q € R and R € R7*1 are symmetric positive definite matrices. The main goal
of the paper is to find switching law o(x,t) and state-feedback controller u = K;x(t),
where K; € R?*" i € m such that, the the system (1) to be exponential stable and
the cost function (4) satisfies ] < J* where J* is a guaranteed cost value, which is
defined in Definition 1. Before presenting our main results, we introduce some necessary

definitions, lemmas, and theorems.

Definition 1. [20] For all uncertainties satisfying (2) and (3), state-feedback control
u*(t) and switching law o”(x,t) are said to be guaranteed cost value (GCV) and guar-
anteed cost control law (GCCL), if the closed-loop system (1) to be asymptotic (or
exponential) stable and the value of cost function (4) satisfies J < J*, where J* is a

positive scalar.

Definition 2. [24, 33] The system (1) under switching law o(x, t) and control u = K;x(t)

is said to be exponential stable if the norm of state vector x(t) satisfies (5)
()]l < kye ™2 |x(0)]], (5)
where k; >0 and k, > 0, and ||x(0)|| is initial value at time t =0 .

Lemma 1. [26] For matrices L, P and Q > 0, the following inequality holds

P
LT -Q

]<0<=>P+LQ‘1LT<O. (6)
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Lemma 2. [33] Consider D, E, and F be real matrices, and matrix F satisfies FTF < 1.

For any positive scalar ¢, the following inequality holds

DFE+ETFTDT <e'DDT+¢ETE (7)

Lemma 3. [25] For any symmetric matrix Y, arbitrary matrices M and N and for all

F satisfying FTF <1,i € m, the following inequality holds
Y +MFN +NTFTMT <.
if and only if there exists positive scalar ¢ such that

Y+eNIN+eTMTM <0,

Lemma 4. [40] For any real symmetric matrix A € R™"
Amin(A)lIxlI? < 2T Ax < Anax(A)lI?, (8)
where Apin(A) and Ay, (A) are the smallest and largest eigenvalues of matrix A.

Theorem 1. For the system (1), if there exist matrices P > 0, P; > 0 and P, > 0,
positive scalar a and positive definite scalar function V(x(t)) as a Lyapunov function

for system (1) such that
V(x(1)) < —allxl?, (9)
then, the switching law (10) can stabilize the switched system (1) exponentially.

o(x,t)= argn%in{xTPfi(x)}. (10)

Proof. In ([39]) using the min-projection switching strategy this theorem has been
proved for nonlinear switched systems in the form of x = f;(x), i € m .To extend this
theorem in switched systems (1), the following Lyapunov-Krasovskii function is pro-
posed

0
V(x(t)) = xT (£)Px(t) + J xT(t+1)Px(t + 1)dt
—d

0
+ J- xT(t +7)Pyx(t + 1)dT,
~h

and it is proved to reach exponential stability, there exist positive scalars k; =
ATi’ld}C(I—))

and k, =
/\min(P) g

a
——— satisfy the exponential definition (5). O
2 P) ®)
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3 Main Results

Theorem 2. System (1) under the following switching law is to be exponentially stable

o(x,t) = argmin{x! Z; %), (11)
iem
where
0; S, PWK;
zZi=| st - 0 |
k'wfp o  -P,

f:[ x(t),x(t —d), x(t - h) ] , (12)

and

Xi= Ai + AAI +BZ'K1‘ +ABiKil
0; = x'P+Px;+P +P,+Q+K/RK;,

if there exist symmetric positive-definite matrices P, P; and P,, and matrices K;, i € m,
such that the following inequality holds:

m

Z[xT(t)Gix(t) +xT(1)S1x(t —d)+ xT(t —d)ST x(t)

i=1
+xT(t =K WTPx(t) + xT (t)PW; K;x(t - h)

—xT(t—d)Px(t—d)—xT (t —h)Pyx(t—h)| <0, (13)

In addition, GSV is J* = p(0)TPH(0) + [, pT (0)Pip(x)dt + [, T (1)Pap(v)d .

Proof. Clearly from switching (11) and inequality (13), it is resulted that Y ", Z; <0
and consequently, there exists an index i € m such that £ Z;x < 0 for an augmented
state vector ¥ € R, £ =0 . Now the following function is preposed as a Lyapunov-

Krasovskii function, where P, P, and P, are symmetric positive definite matrices

0
V(x(t)) :xT(t)Px(t)JrJ- xT(t+1)Px(t +1)dt (14)
-d

0
+ j xT(t +7)Pyx(t + 1)dT,
~h

Time derivation of V(x(t) and substituting u(t) = K;x(t) into system equations (1) and
using Notice 1, results
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V(x(t) = 2T (1)Px(t) + xT (£)Px(¢) + xT (£)Pyx(t) = xT (t —d)Pyx(t — d)
xT t)Pox(t) — xT (t —h)Pyx(t —h) = xT (t)(A; + AA;)T Px(t)
xT(H)P(A; + AA;)x(t) +xT (t = d)AL Px(t) + xT (t)PAgix(t - d)

)KT(B; + AB;)T Px(t) + xT (t)P(B; + AB;)K;x(t)

+xT(t =K W Px(t) + xT (1) PW;K;x(t — h) + xT (£)Pyx(t)

—xT(t—d)Pyx(t —d) + xT (£)Pyx(t) — xT (t — h)Pox(t — h)

(
(
T(t
(
(

= XT(t) P(Al + BiKi) + (Al + Bl‘Ki)TP +PNiFi(Ci + DiKi)

+(Ci+ D;K)TFINTP + P+ Py |x(t) + xT (t - d)AL Px(t)
+xT(t)PAgix(t —d) +xT (t = h)K] WT Px(t) + xT (£)PW;K;x(t - h)
—xT(t=d)Px(t—d)—xT(t = h)Px(t — h)

Applying Lemma 2, we have

PN;F;(C; + D;K;) + (C; + D;K;)TET NI P
< Sl‘PNiNiTP+Ei_1 (Ci+DiKi)(Ci+DiKi)T.

Rewritten equation (15) results

V(x(t)) < xT(t)[P(AZ- +B;K;)+ (A; + BiK;))" P+ ¢71(C; + D;K;)(C; + D;K;)T

+&PN;NTP+ P, + P, |x(t) + xT (t = d)AL Px(t) + xT (t)PAgix(t — d)

+xT(t =K WTPx(t) + xT (t)PW;K;x(t — h) — xT (t - d)Pyx(t — d)
—xT(t=h)P,x(t - h).
By defining
0; = P(A; + B;K;) + (A; + BiK;)T P+ ¢;1(C; + D;K;)(C; + D;K;)"
+&PN;N/P+P, +P,+Q+KIRK;
Sl = PAdil
and adding xT (£)(Q + KiTRKl-)x(t) to (17), results
V(x(t) + xT(£)(Q+ K RK)x(t) < xT (£)0;x(t) + xT (1)S1 x(t — d)
xT(t-d)S{x(t)—xT(t—d)Pyx(t —d) + xT (t = h)K W Px(t)
xT () PW;K;x(t — h) - xT (t — h)Pyx(t — h).

Consequently inequality (18) can be written as

V(x(t) +xT(£)(Q+ KT RK;)x(t)
Xt 1T 6 s, PWK [
<| x(t-d) st -P, 0 x(t—d)
x(t—h) KI'wrp 0 -P, x(t—h)
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0; S1  PWK,;
=T (t) sT -P 0 |x(t). (19)
k'wip o -p,

Now, it is concluded that there exist an i € m such that 1 Z;% < 0. Therefore, selecting
switching law (11) for any time t € R, results that £ Z;% < 0 and

V(x(t) +xT(£)(Q+ KT RK;)x(t) < X (t)Z;%(t) < 0. (20)
So,

V(x(t) < —xT(£)Qx(t) - x (t)(K] RK;)x(t)
= —xT(£)(Q+ K] RK;)x(t), (21)

Obviously, it is concluded that G; = Q+KiTRKl- is positive-definite matrix for any i € m.
Therefore, using Lemma 4, Vx € R",i € m the following inequality holds:

_/\max(Gi)Hx”2 < _XTGix < _/\min(Gi)HXHZ' (22)
Now, by choosing
Y= /\min(G) = r}yﬂ?(/\min(Gi))f (23)

Then, applying Theorem 1 results that switched system (1) is exponentially stable. [

Remark 1. We need to find unknown matrices P, P; ,P, and control gains K; to
realize the switching law (11). Also, positive scalars ¢; are designing constants and
can be selected by the designer arbitrarily or by some optimization methods. In the

Theorem 2 and using Lemma 1 it is shown that (13) is equal to a set of LMIs (24).

Theorem 3. If there exist invertible symmetric positive definite matrix X, P, and
matrices M; and V; for some positive scalars €;, i € m, such that the following LMI to
be satisfied

v Ay wiv xToM!T xT MT &

A, -1 0 0 0 0 0 0

viw, o -1 o0 0 0 0 0

X 0 0 I 0_1 0 0 0 <0, (24)
M; 0 0 0 -P 0 0 0

X 0 0 0 0 -Q1' o 0

M; 0 0 0 0 0 -R' 0

GG 0 o0 0 0 0 0 —&'I

where
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W = (A; X+ B;M;)T + A;X + B;M; +&;'N;NT,
Ci = CiX + DiMi'

and then, inequality (13) holds and switching strategy (11) for the system (1) can be

implemented.

Proof. Define the following matrix

Q; PTA; PWV; I k' I k'
Alp  -P 0 0 0 0 0
viwip 0 -1 0 0 0
Y = I 0 I . 0 0 | (25)
K; 0 0 0o -t 0 0
I 0 0 0 0 -Q!' o
K; 0 0 0 R |
where
Qi =(A; +B,'Ki)TP +PT(A1‘ +BiKi)'
Using Lemma 2, the matrix inequality (13) is equal to the following
T
Y+[ D; 0146 ] FlT(t)[ NiTP O1x6 ]
T
+[ NTP 0146 | Fit)] @ 0146 | <0 (26)

where
(Di = Ci + D;K;.

By rewriting inequality (26), we have

v PTA; PW,v; I KT I KT
ALPp  -P 0 0 0 0 0
viwip 0 | 0 0 0 0
I 0 o -pPt 0 0 0
K; 0 0 0o -P' 0 0
I 0 0 0 0 -Q' o
K 0 0 0 0 0 -R'
+[ G +Ki D | ET6NTP 0156 |
O6x1 : '
PTN;

+

0 [ Fi(t)Ci + Fi(t)D;K;  O1x6 ]
6x1
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vy PTA; PW VI KT I Kt
Alp  -p 0 0 0 0 0
viwlp o -1 0 0
= I 0 0o -p! 0 0 <0, (27)
K; 0 0 0 -P' 0 0
I 0 0 -Q! o0
K; 0 0 0 0 0 -R!

where

¥1i = (A + B;K;)TP + PT(A; + BiK)
o = (Aj + B;K;))TP+ PT(A; + B;K;)+ CTFI (t)NT P
+ KI'DIFI(t)NI P+ PTN;F;(t)C; + PTN;F;(t)D;K;,

By simple calculations in

Y e @ 0y ]T[ D 01 |

v [ NTP 016 | [ NTP 016 ]

v PTAy; PWV; I KT I KT
ALPp  -P 0 0 0 0 0
viwip 0 | 0 0 0
= I 0 (S . 0 0
K; 0 0 o -p!' 0 0
I 0 0 0 0 -Q' o0
K 0 0 0 -R'!
+[ &i(Ci + DiKj)T(Ci + DiK;)  O1y6 l
O6x1 O6x6
ef ! PTN;NTP olx6l
Ogx1 O6x6
vs;  PTA; PW,v; I KT I KT
ALP  -P 0 0 0 0 0
viwip 0 | 0 0 0
= I 0 o -pt 0 0 0 |<o, (28)
K; 0 0 o -p~!' 0 0
I 0 0 0 0 -Q' o
K; 0 0 0 0 0 -R!

where
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3 = (A; + B;K;)"P + PT(A; + BiK;)
+&;(C; + DiK;)T(C; + DiK;) + 7' PTN; NI P.

Now, from the Lemma 1, inequality (28) is equal to (29)

Q; PTA;; PTWVv, 1 KT I kl of
Alp  -p 0 0 0 0 0 0
vIwrIp 0 -1 0 0 0 0 0
I 0 0 -0 0 0 0
1 »(29)
K; 0 0 0 -P 0 0 0
I 0 0 0 0o -Q' o0 0
K; 0 0 0 0 0 -R! 0
@ 0 0 0 0 0 0 —&'I|

where
Q;=Q;+&'PN;,NTP,

Multiplying both sides of (29) by diag{P~T,P;',1,1,1,1,1,I} and diag{P~',P[',I,1,1,1,1,1}
yields

prT 0 o0 0 |
o pr'o 0
=l 0 0 I 0
: 0
0 0 0 .. 0]
¢; PTA; w; I KT I kf of
AP -p 0 0 0 0 0 0
w; 0 -I 0 0 0 0 0
MR 0 o -P'oo0 0 0 0
K; 0 o o -pP' o0 0 0
I 0 0 0 0o -Q1! o 0
K; 0 0 0 0 0 -R! 0
D; 0 0 0 0 0 0 —&'I |
rt o0 o0 0
o ptoo 0
x| 0 0 I 0|,
: 0
0 0 0 0 |

where

@; = (A; +B;K;)TP+ PT(A; + BK;) + ' PTN;N/ P,
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w; = PTW, V.
So we have
I P T(a;+B;k)T +(4; +B;K;)P7!
+erIN;NT Ay T W, V; o p Tkl pT p Tk Pl +kID])

T 1Ay -py! 0 0 0 0 0 0

vIwl 0 - 0 0 0 0 0
p-1 0 o -t 0 0 0 0 <0. (30)

K;P~! 0 0 0 -py1 0 0 0

p-1 0 0 0 0 onl 0 0

K;p~L 0 0 0 0 0 -r! 0

(C; +DijK;)P~L 0 0 0 0 0 0 -7l

0

In summary, to obtain o(x,t), u(t) and J*, the following steps are required to per-

form.
Step 1: Select positive scalars ¢;, i € m.

Step 2: Solve LMIs (24) in Theorem 3 (Via LMI commands in the Matlab software or
YALMIP toolbox) and obtain invertible symmetric positive-definite matrices X,
P, and matrices M;, i € m. Note that X = P~!, M; = K;X and consequently.
P =X"' K; =M;X"!. Positive definite matrix P, can be given from inequality
%#1Z;% <0 in Theorem 2.

Step 3: Obtain State feedback u(t) = K;x(t).
Step 4: Calculate Z;, i € m in Theorem 2.
Step 5: Obtain switching law o(x,t) = argminiEm{iTZif}.

Step 6: Calculate guaranteed cost control J*.

4 TIllustrative Example
Example 1. Consider the following uncertain time-delay switched linear system with
two subsystems.

xX= (Ao(x,t) + AAa(x,t))x(t) + Adtr(x,t)x(t - d)r
+ (BU(X,t) + ABa(x,t))u(t) + Wa(x,t)u(t - h),
x(t) = ¢(t), t €[ty 0], to = max{d, h}, (31)

for i = 1,2, and the following matrices
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2 2
Bl = O y BZZ 0 y
0o 2 2 0
0 0.2 0.2 O
Ag = , Ay = ,
a7 02 0 a2 { 0 02 }
0.3 0.2 0.4 0.3
Wl = , 2=
0.2 04 ] 0.3 0.5
0.4 03 | [ 0.2 0.7 ]
Ny = , N, = ,
0.3 0.6 | 0.6 0.3
0.6 0.2 [ 0.4 0.2
Cl = , C2 . »
0.3 0.6 ] i 0.6 04
0 04 ] [ 0 0.2
Dl = y D2 - y
04 O 0.2 O
d=2and h=1 and
x(t)=[e! —e']T,  te[-20],
Also, weighted matrices Q and R are selected as
1 0
=R= . 32
Q=R=| ;| ] (52)

Note that all subsystems of system (31) are stable and unknown matrices F;(t) in Notice
1 are considered as a diagonal random time-varying matrices such that F iT(t)F,-(t) <I.
The aim is to find guaranteed cost controller u=K;x( t),i € {1, 2}, switching signal o(x, t)
and guaranteed cost J* of the switched system (31) with weighted matrices (32). We

perform the following steps.
step 1: Scalars €; and €, are selected as

&1 = 01, Ey) = 01,

step 2: Solving LMIs (24) we obtain

y_| 28359 -0.9024 ]
__ -0.9024 1.2247 |’

[ —2.5784  0.0004 |

Ml = ,
| —0.0003 -2.5774 |

[ —0.5288 —2.0491 |

M, = ,
| -3.1068  0.5289 |
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—x1
—Xx2

System States
o

-0.5

1
0.5 k
\//'
2 (o] 2 4

6 8 10
Time (Sec)
Figure 1: States x1(t) and x5(t).
15r
—ul of subsys. 1
—ul of subsys. 2
1 |-
051
0k /\/\/\/\AA/\,\
VVVVVV VVVVVV YVVEY
05
1 I I I I I ]
-2 0 2 4 6 8 10
Time (Ser)

Figure 2: Control input uq(t) of each subsystem.

and thus

poxl _[ 0.4606 0.3394 }

0.3394 1.0667

[ -1.1876 —0.8747
"1 Z0.8750 -2.7493 |’

[ -0.9391 -2.3652
27| 212516 -0.4904 |’

System states start from an initial condition xy and Figure 1 shows the state x;(t)
and x,(t) and, Figure 2, Figure 3 and Figure 4 show control inputs u;(t) and u;(t)

of each subsystem and switching signal o(x,t). It can be seen that theoretical results
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—u2 of subsys. 1
—u2 of subsys. 2

AAAAA

051 7
1 | | | | |
-2 0 2 4 6 8 10
Time (Sec)
Figure 3: Control input u;(t) of each subsystem.
.
1.81 .
=
>
B 16} |
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£
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»
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Figure 4: Switching signal o(x, f).

in the Theorem 2 and Theorem 3 which state that uncertain switched system (1) is
exponentially stable under applying proposed switching strategy, are coincide with the

simulation’s results.

5 Conclusion

In this paper, a robust switching law for the GCC problem of a general form of uncertain
time-delay switched system is designed. The presented method is based on using the
LKF technique and extension of the min-projection switching strategy in this type
of switched system. Also, uncertainties in each subsystem’s dynamics are considered
randomly and are additive. Besides switching law, guaranteed linear control is obtained
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via the solution of extracted LMIs in the presented theorems. Finally, simulation verifies
the theorem’s results.
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1 Introduction

Obtaining the ROA for a nonlinear system at a point of equilibrium is challenging for the
control theory. The ROA at a point of equilibrium comprises a set of initial conditions the
state trajectories of which converge on the equilibrium again. With a small ROA, a disturbance
may quickly take the system out of the region and the system can not get back to the stable
point of equilibrium. Therefore, the extent of the ROA is one of the criteria for the stability of
nonlinear systems around the respective point of equilibrium. Computing the ROA is not an

easy task and hence, its estimation has turned into a crucial problem.

In the present study, a new methodology for the enlargement of the ROA of input-affine
nonlinear systems is developed by designing a nonlinear state feedback controller through the
SDRE. The equation gives a shape factor that expands the ROA. Since the choice of the shape
factor is affected by the system dynamics, a non-uniform extension of the ROA is established.
The main advantage of the proposed approach is incorporating both polynomial and non-
polynomial dynamics. Moreover, the proposed method deals with both bound and unbound
ROAs. Accordingly, the ROA enlargement problem is defined as an SOS optimization problem.
The present method is evaluated in comparison with the existing methods by its application
to various nonlinear systems that have already been addressed in the previous studies. The
methods proposed in the existing literature for the ROA estimation can be classified into cate-
gories, namely Lyapunov [1]-[9] and non-Lyapunov [10]-[13]. In the Lyapunov-based methods, a
Lyapunov Function (LF) is sought that is positive definite with negative definite time derivative
for its largest sublevel set. The mentioned largest sublevel set is considered as an estimate of
the ROA. Reference [1] presented a new design to maximize the ROA for a saturated super-
cavitating vehicle. To cope with the immeasurability of the vertical speed, the development of
the presented design was made possible through output feedback control schemes. The condi-
tions required by the achieved controller to locally and asymptotically stabilize the closed-loop

system were represented by LMI presentations.

Reference [3] developed a method for ROA enlargement in nonlinear systems by trajectory
reversing. Numerical simulations were performed to validate the suggested method employing

modeling systems of Van der Pol oscillator and Hahn.

In [5], stability analysis of polynomial systems was carried out based on LFs. For ROA
enlargement, a region with variable size was used as a shape factor. The purpose was to achieve
the biggest sublevel set of LFs with the biggest shape factor. In [6], similar to [5], by adopting a
polynomial as a shape factor, the ROA was enlarged and the use of bilinear SOS programming
with polynomial LFs was suggested. Also, due to their higher richness than the quadratic LFs,
the sublevel sets of higher-order polynomial LFs were used. However, it should be noted that
as soon as the degree of LF increases, the number of decision variables is considerably enlarged.
Hence, to lower the number of decision variables, employing the maximum or a minimum
number of a group of polynomial functions was suggested as a solution in [7]. Khodadadi
et al. [9] proposed a numerical methodology for ROA estimating in nonlinear polynomial
systems through SOS programming. On the other hand, for estimation enlargement, an SOS

optimization problem was solved by defining a subset of the invariant set through a shape factor.
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Reference [10] proposed a non-Lyapunov method for the estimation of the Robust Domain of
Attraction (RDA) and directional enlargement of the Domain of Attraction (DOA) by using
Markov chains and an invariant measure. Their methodology formulated the estimation of
RDA and directional enlargement of DOA as an infinite-dimensional linear problem. A major
shortcoming of Markov modeling in the estimation of DOA is that it incorporates the real
DOA into the estimated one; as a result, in boundary partitioning, it does not ensure achieving
stability. To tackle this problem, they suggested refining any partition set that had a large
invariant measure. In recent studies, control parameters have been employed in the enlargement
of the ROA [14]-[22]. Enlarging ROA in non-linear systems is a substantial issue for the designers
of non-linear controllers. For the systems with large ROAs around a point of equilibrium, the
problems concerning tracking and disturbance can be systematically tackled. In particular,
it would be very useful to characterize the controllers that maximize the ROA. In [15], a
formulation for Model Predictive Control (MPC) was presented in order to enlarge the DOA
without the requirement to enlarge the horizon of prediction. An array of contractive control
invariant sets was employed to substitute the MPC terminal region. Therefore, computing the
contractive array of control invariant sets was essential in the developed formulation, which was

solved only for linear systems.

Haghighatnia and Moghaddam [18] offered a method to enlarge the robust ROA in uncer-
tain systems by designing linear controllers. The problem of enlarging the robust ROA was
formulated as a novel optimization at three levels, which sought the optimal controlling param-
eters of the linear controller. The present study is arranged as follows. The ROA is estimated
and then, enlarged; the pseudo-linearization is discussed, and the SDRE approach is developed
in Section 2. The achieved results are illustrated in Section 3. In Section 4, by illustrative
numerical examples, the effectiveness of the proposed method is proven and a comparison is
made with other published works in the literature. Finally, a conclusion is briefly made in
Section 5.

2 Preliminaries

In the following, the notation utilized in this study is provided.

R" : an n-dimensional vector space over the field of the real numbers,

R, : the set of all polynomials with real coeflicients in n variables,

¥,: the SOS polynomials set in n variables,

W : the state set that is a bounded open subset of R” Euclidean space and contains the origin,
CK(W) : tthe class of functions continuously differentiable for k times in .

Assume a system in the following form:

%= f(x(t)), (1)

where x(t) € R";x(0) = x is the initial state at + =0 and f is an n-vector of elements of R,, with

f(0)=0.
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Definition 1 (point of equilibrium). x, € R" is a point of equilibrium in system (1) if f(x,) = 0.
The points of equilibrium in system (1) correlate with the intersection of its nullclines, i.e.,
the curves represented by f(x) = 0. Without loss of generality, we suppose that the point of
equilibrium under investigation concurs with the origin of the state space of R",(x, = 0) in the

sequel.

Definition 2 (ROA). If the origin is a point of equilibrium for (1), the ROA of the origin is
defined as follows:
Q ={xg € R" | lim;_oP(xo, t) = 0},

where ¢(xp,t) denotes the solution starting from the initial state.

Definition 3 (SOS polynomials). A multivariate polynomial P(xq,xy,...,x,;) = P(x) is an SOS
if polynomials fi(x),..., f,(x) exist such that

m
Px)= ) f2(x) (2)

i=1
From the definition, it can be deduced that the SOS polynomials set in n variables is a
convex cone. It can be indicated that the existence of an SOS decomposition (2) is equivalent

to the existence of a positive semidefinite matrix Q such that
P(x) = ZT (x)QZ(x), (3)

where Z(x) is some properly chosen monomials vector. It is undisputed that an SOS polynomial
is globally nonnegative. As a major characteristic of SOS polynomials, this is decisive for
many applications in the field of control; in particular, the cases in which different polynomial
inequalities are substituted with SOS conditions [23].

2.1 Estimating ROA

A Lyapunov-based method is developed for estimating the ROA. Enlarging the ROA provides
more freedom in designing nonlinear controllers. Moreover, it can be considered as a way of
improving the performance of nonlinear closed-loop systems. In this regard, we investigate a
positive definite LF with a negative definite time derivative in the largest sublevel set. The
mentioned largest sublevel set is an estimate of the ROA. We aim to achieve a provable ROA
for the system such that all the points that start in this region will converge to the fixed point

of origin.

Theorem 1 ([24]). If we have a function V : R" — R that is continuously differentiable as

follows:
V' is positive definite, (4)
Q:={xeR"|V(x)<c} is bounded, and (5)

e R V() <\ (0] e e R"| 2 flx) <0, (6)
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where c is a positive value. For all x(0) € Q), a solution for (1) can be achieved and lim;_,.x(t) =
0. Accordingly, Q) is the subset of the ROA for (1) and it is invariant. The continuously
differentiable function V(x) is called a local Lyapunov function. For arriving at a better estimate
of the ROA, we need to acquire a V(x) that leads to a larger Q.

2.2 Enlarging ROA

One of the parameters that have a significant effect on the estimation of ROA is the shape
factor. However, no systematic method for determining and selecting the shape factor has been
presented so far. In the previous studies, since a fixed shape factor has always been used,
the uniform extension of ROA has been addressed. In the present article, the shape factor
is obtained through the SDRE approach and the dynamics of the system are effective in its
selection. Therefore, the non-uniform extension of ROA is dealt with. With the aim of enlarging
Q, we consider a region with variable size Py = {x € R" | Py(x) < B}, where Py(x) is a positive
convex polynomial called the shape factor. Maximizing f, as long as Py C Q) is established,
leads to an estimation of the ROA. With the application of theorem 1, we can formulate the

problem of estimating the ROA as an optimization problem in the following form [5]:

max
VeR, ﬁ

s.t.
V(x)>0 forall xeR"\{0} and V(0)=0
the set () is bounded,
{xeR"|Py(x) < B} CQ,

{xeR"lV(x)Sc}\{O}g{xeR”Iaa—‘t/f(x)<0}.

Given that the choice of the shape factor in the estimation of the ROA plays a fundamental
role, in this paper, the shape factor is obtained based on the SDRE idea.

2.3 Pseudo Linearization

The pseudo-linearization methodology represents the nonlinear system as a linear-like system
for which the matrix is dependent on state variables. Assume an input-affine nonlinear system

in the following form:

x = f(x)+ B(x)u. (8)

where x € R"” is the state vector, u € R™ is the input vector, and f: R" - R", B:R" — R™".
Here it is assumed that f(0) = 0. In short, the concept of pseudo-linearization for Eq. (8) can

be formulated as follows:

X = A(x)x + B(x)u. (9)
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Matrices A(x) and B(x) are called State-Dependent Coefficients (SDC) matrices [30]. Assuming
f(0) = 0 and f(.) € C}(W), there is always a function A(x) that is continuous nonlinear and
matrix-valued as follows:

f(x)=A(x)x, (10)
where A : W — R™" is achieved by mathematical factorization; it is obviously nonunique with
n>1. Of note, the above-mentioned assumptions for f(x) ensure that a global SDC parame-
terization of f(x) exists on W. The theorem below indicates that f(x) can be reformulated as

given in (10).

Theorem 2 ([30]). Let us have f : W — R" in a way that f(0) =0 and f(.) € CK(¥),k > 1. For
all x € R", there is an SDC parameterization (10) of f(x) for some A : R" — R™". An instance
of such parameterization ensured by the given conditions is the following

b o)
A = —_— d/\, 11
(x) JtO Ox |x—)\x ( )
where A is a dummy variable introduced in the integration.

Proof. (11) can be validated by assuming the functions set: f : R — R" established by
f(/\) £ f(Ax). Then, for each x € R",

o
f=fm=fo+ [ S

t=0
f(O) =0, as assumed, and d{l(/\/\) = (%|x_/\x)x, thus
1
d
fo0= | 0 T, s (12)
t=

Comparing (12) with (10) gives the desired result (11). Using extended linearization, any input-
affine nonlinear system (8) that meets the conditions for f(x) given in theorem (2) can always
be formulated as an SDC (9). Of note, pseudo-linearization has many advantages. First, unlike
Jacobian linearization, it retains all nonlinearity properties of the system and second, its non-
uniqueness creates extra degrees of freedom that can be used to enhance controller performance
[30]-[31].

2.4 SDRE Method

The SDRE method originates in extending the Linear Quadratic Regulator (LQR) problem
into nonlinear systems by maintaining all the nonlinear properties. It functions on pseudo-
linearization of the system and entails factorization (i.e., parameterization) [30] of the nonlin-
ear dynamics to the state vector and a matrix-valued function dependent on the state. In this
regard, the SDRE algorithm completely incorporates the nonlinearities of the system, turn-
ing it into a (non-unique) linear structure having SDC matrices and minimizing a nonlinear

performance index with a quadratic-like structure. Consider the system (9) with cost function
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1

J=5 jw (xT(H)Q(x)x(t) + uT () R(x)u(t))dt, (13)
t=0

where Q(x) and R(x) are state-dependent weighting matrices to meet Q(x) > 0 and R(x) > 0 for
all the values of x. It is clear that the design of the SDRE controller is similar to the LQR one
with minor variations in matrices A, B, Q and R, which are state-dependent. However, Q and
R do not necessarily require to be state-dependent. Therefore, in order to minimize (13), the
algebraic SDRE in the following should be solved [31]:

AT (x)P(x) + P(x)A(x) — P(x)B(x)R™ (x)BT (x)P(x) + Q(x) = 0. (14)
The optimal control for minimization of the cost function (13) is
u(t) = =R (x)BT (x)P(x)x, (15)

where P(x) is the unique, symmetric, positive definite solution for (14). The major privilege
of the SDRE method may be the non-uniqueness of the pseudo-linear representation of the
system, which gives the designer more freedom. By replacing delay in the system matrix,
Batmani and Khaloozadeh introduced a method to find a sub-optimal solution for a class of
nonlinear time-delayed systems using the SDRE method [25]-[29].

3 Main Results

In the following, first, the nonlinear optimal control system is written in the pseudo-linear form.
Then, the nonlinear state feedback control is obtained through SDER. The controller, while
stabilizing the system and minimizing the cost function, leads to the expansion of the ROA by
using the shape factor. Since the choice of this shape factor is affected by the system dynamics,
a non-uniform extension of the ROA will be established. Consequently, the problem of enlarging
ROA is formulated in the form of an SOS optimization problem. Assume the following class of
input-affine nonlinear systems:

X = f(x)+ B(x)u. (16)

where f : R" - R", B:R"— R™", with x € R" representing the state and u € R” indicating

the control input under the component-wise saturation constraints as follows
uelU: |ul|<u; ,i=1,..,m. (17)

with U is a compact subset of R™ comprising the origin as an interior point. The origin is
considered as a point of equilibrium for (16) when u = 0 i.e. f(0) = 0 ([32]). We seek for
a strategy of state feedback regulation u = K(x) that asymptotically stabilizes (16) into the
origin under (17), has the largest estimate of the ROA, and minimizes the cost function (13).
Reference [33] sought to obtain an LF V(x) which was an upper bound for the cost function:
J(K(x),x) < V(x). According to [5], when an SOS V(x) and a polynomial state-dependent control
law u = K(x) can be achieved at a considered time instant ¢ that are consistent with (17)
such that J(K(x),x) < V(x), the set Q = {x € R"|V(x) < c} is a positive invariant region for the
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regulated input constrained plant. First, we write the system (16) in the following pseudo-linear
form:
X = A(x)x + B(x)u. (18)

Applying the SDRE method, we calculate the feedback control u = K(x). Replacing it in (18)
we obtain:

{x = A(x)x + B(x)K (x) = F(x) (19)

K(x)eU
Now the problem of estimating the ROA of (19) is written as the following optimization problem:

max
VeR, ﬁ

s.t.
V(0)=0,V(x)>0, xeR"
{(xeR"|Py(x) < B} C{xeR"|V(x)<c},
{xeR"|V(x)<c}\ {0} C{xeR"| g—‘;P(x)<O}
(xeR"|V(x)<c}C{xeR"| |K(x)|<).

In order to enlarging the ROA, using the Positive Stellensatz theorem [34], the optimization

problem (20) is converted to the SOS programming problem as follows:

VGRH,sﬂ§,§3,54ez,,
s.t.
V-l ek,
(c-V-s1(B-D)) X, (21)
- aa—ZF(x)+lz+sz(C—V) €X,

(1; —K=s3(c-V))eX,
(1/71'+K—S4(C—V))Ezn

where s1,55,53 and s4, are SOS polynomials. Also, [;(x) is a positive definite polynomial as
Li(x) = 7:1 ei]-x]z for i =1,2, in which ¢;; are numbers with positive values.

The previous description is summarized in the form of an algorithm below:

Step 1: linearize the system and compute the SDRE control.

Writing Equation (16) in the form of (18) and then, designing a nonlinear state feedback
controller according to the SDRE and replacing it in (18), we obtain (19).

Step 2: To calculate the initial shape factor and LF, do:

JdF

A= =|s=p-
axlx—o

Then, solve equation (23)
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ATP +PA=-I. (23)
Using the matrix P; > 0, we define the initial shape factor and LF as follows:

Py(x) = xT P x, (24)
V = Py(x). (25)

Step 3: Set V to a fixed value and perform the SOS optimization for s,,s3,s4

*

max Cc
CER,57,53,54€%,

s.t.

- %—ZP(x)+lz+52(c—V) €X,, (26)

(1 —K=s3(c=V)) €,
(ﬂl‘+K—S4(C—V)) ex,.
Step 4: Set V and PO to fixed values and perform the SOS optimization for s;

max

BER,s €T,
s.t. (27)
(c=V-s1(p-P)) € Xy
Step 5: Using s1,5;,53,54,¢%, %, Py from the previous steps, compute V as following:
V-lLeX,
(c=V-s1(B-R)) €L,
- %—ZF(x)+lz+sz(c—V) ex,, (28)

(=K =s3(c=V)) X,
(Z; + K=s4(c=V))eX,.

%
Step 6: Use the quadratic part of the new LF as new Py and replace V wzth;
Using the newly achieved LF and shape factor, make repetitions to get convenient LF.

4 Simulation Results

The following instances are given to demonstrate capability of the method developed in the

present study in ROA enlargement for the nonlinear optimal control system.
Example 1. Consider the following input-affine nonlinear system examined in reference [33]

{X1 =x(t),

(29)
ity = —xq () = (1= %3 (1)) xa(t) + u(t).
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The weighting matrices Q = diag([0.01 0.01]),R =1 and input saturation constraint |u(t)| < 0.2.
are assumed. In [33], the system’s ROA was estimated by the fixed shape factor — pg(x) = xTx =
xf +x§, as Figure 1.

In this paper, we search for the feedback control u(t) = K(x(t)) that stabilizes the system
asymptotically, minimizes the cost function, and has the largest estimation of the ROA. We use
the proposed method for Example 1.

Step 1: Note that [; =1, = 10’6(x% +x§).

First, we reformulate the system (29) in the pseudo-linear form below:

J&l 0 1 xl(t)

= 2 +

X |- (1 =xy(8)][x2(8)
Then, by applying the SDRE method (14), the matrix P > 0 is obtained. Matrix-array P is
state-dependent:

1

0] u(t), (30)

2
. .01 .
p_ [0-005x¢ +0.015 0;)05 ’ (31)
0.005 0.01x2 +0.01
u=-Kx=-R BT Px=—(0.005x, +0.01x7x, + 0.01x,). (32)

The control obtained by the SDRE method leads to the minimum cost function. By replacing
(32) in the control system (30) we obtain:

{xl =x,(t) .
= x = F(x). (33)
Xy = —1.005x (£) + 0.99x2 (£)x(t) — 1.01x5(t)

Step 2: by using (22) and solving Equation (23), obtain:

1.4951 0.4975
= . (34)
0.4975 0.9876
Using the matrix P; > 0, we define the initial shape factor as follows:
Py(x) = xT Pyx = 1.4951x7 + 0.99502x, x; + 0.98764x3, (35)
V(x) = Py(x), (36)

Step 3: by using (26), obtain:

55 = 0.14130x] - 0.05192x3 x, — 0.08065x7x3 + 0.33568x7
0.04097x, x5 + 0.09480x; x, + 0.11980x5 + 0.31168x3

s3 = 0.04746x] + 0.01754x3x, + 0.05305x3 x5 + 0.01933x7
+0.01792x; x5 +0.03783x; x5 + 0.03009x3 + 0.00299x3 + 0.05463

54 = 0.04746xT +0.01754x3 x5 +0.05305x%x3 + 0.01933x7
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+0.01792x;x3 + 0.03783x;x, + 0.03009x2 + 0.00299x2 + 0.05463
Step 4: by using (27), obtain:

s1 = 0.18938x] +0.08673x3 x, + 0.27538x7x% — 0.16025x7
+0.09146x, x5 +0.15174x, x5 + 0.11653x5 — 0.18607x3 + 0.78816

Step 5: by using (28), obtain:

V =0.03230x% - 0.00278x3x, + 0.00654x7x3 — 0.08683x}
~0.01464x3x3 +0.00108x3x, + 0.00576x7 x5
+0.04102x3x3 +0.59692x7 + 0.00581x; x5 4 + 0.02795x, x5
+0.38961x;x, +0.01006x5 —0.03219x5 + 0.40588x3

Step 6: The new shape factor is: Py = 0.59692x%+0.38961x1x2+0.40588x§ Repeat the process
in 35 iterations to obtain:

V =0.02717x% = 0.02229x3x, + 0.03442x}x3 — 0.04244x}
+0.05791x3x3 +0.09611x3x, + 0.05382x3 + 0.16735x3 x5
+0.16528x7 +0.01949x; x5 + 0.08147x, x5 + 0.10276x, x,
+0.00546x5 +0.01261x5 +0.09084x3. (37)

The level set of V in (37) is the estimated ROA for System (33), as illustrated in Figure 1. Tt
has been compared with the estimates derived by the WK-SOS method in [33].

Figure 1: AR estimation provided in[33] (Dashed line) and estimated
AR using proposed method (Continuous line).
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Figure 2: Cost function in the proposed method and reference [33] .

As shown in Figure 2, the cost function value in reference [33] starts from 0.7 and gradually
decreases. In our method, this value is much better, starting at 0.004 and converging at a good
speed. Compared to the method proposed in [33], which uses an uninspired shape factor, our
method uses the shape factor by the selection of Py(x), which expands the ROA. Also, Figure
2 shows that the cost function of the proposed SDRE method is nonlinear, which indicates the
efficiency of the proposed method. In Figure 3, the control function graph and state is shown.
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Figure 3: State trajectories and control signal by proposed method.

Remark 1. Given that SOS works with polynomials, if a system has non-polynomial dynamics,
we need to find a polynomial approximation of the non-polynomial term. Then, we apply the
method to the estimation of the ROA.

Example 2. For the non-linear system in [35] as given below:
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Xp = —sin(xy)— 0.5x,(t),

{xl = X3, (38)

by applying the Taylor series: sin(xy) = x; —xi’/6 and replace it in (38) we obtain:

{xl - (39)

X2 = X%/6 - X1 — O.SXZ(t).

Now, we are looking for an estimation of the ROA of the system (39). By using the proposed
method, the estimated ROA is plotted in Figure 4. The ROA computed in [35] is shown in
Figure 5. By comparing the Figures 4 and 5, it is observed that the estimation of ROA by
the method developed in this study is considerably more efficient than the estimations carried
out by the method in reference [35]. As shown in Example 2, it is evident that our method is

appropriate for DOA estimation in systems of both polynomial and non-polynomial types.

25

15+ bl

05 i
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T
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05+ .

15+ .
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Figure 4: Estimated AR by using proposed method for Example 2.
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Figure 5: The black ellipsoid represents the RA estimated in [35] for Example 2. the dashed blue line (the boundary
of the light blue area) demonstrates the V(x) < 0, region; system trajectories are illustrated by the arrows; and the

points in red indicate the randomly selected sampling states.

Example 3. Consider the following input-affine nonlinear system in [3]:

{xl =—x1 + 2x%x2 +u, (40)

Xz = —Xj.

It is further assumed that Q = diag([1 1]),R = 1. First, we formulate the system in the pseudo-

e

Then, we find the feedback control u(t) = ) that asymptotically stabilizes the system,

linear form below:

minimizes the cost function , and has the largest estlmate of the ROA. By applying the SDRE
method, the matrix P is obtained. The matrix-array is state-dependent: Then we find the
feedback control u(t) = K(x(t)) that asymptotically stabilizes the system, the cost function
minimum, and have the largest estimate of the AR. By applying the SDRE method, the matrix

P is obtained. Matrix-array are state-dependent:

| 0.414 0.343x7 (42)
- 10.343x%  0.627x}+0.5|
= —Kx=-R'BTPx = —(0.414x, +0.343x2). (43)

The control obtained by the SDRE method leads to the minimum cost function. By replacing
(43) in the control system (41), we obtain:

(44)

% = —1.414x; + 2x3x, — 0.343x%,
XQ = —X3.
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Now, we are looking for an estimation of the ROA of the system (44). By solving the above
problem, the estimated ROA is plotted in Figure 6.

X2
o

T

Il

Figure 6: Estimated AR by using proposed method for Example 3.

The ROA computed in [3] is shown in Figure 7.
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Figure 7: the RA estimated in [3] for Example 3 .

The value of the cost function converts to a constant number and equals zero (see Figures
8 and 9).
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Figure 8: States trajectories and control signal by proposed method for Example 3.
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Figure 9: Cost function by proposed method for Example 3.

Figure 9 shows that the cost function of the presented methodology is nonlinear, which

indicates the efficiency of the proposed method.

5 Conclusion

In the present research study, a new methodology was developed to estimate the ROA of non-
linear systems. Moreover, in order to enlarge the ROA, a combination of pseudo-linearization
and SOS programming methods was employed. By designing a nonlinear state feedback con-
troller through the SDRE, a shape factor was obtained that expanded the ROA. Since the
choice of this shape factor was influenced by the dynamics of the system, we had a non-uniform
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extension of the ROA. The major privilege of the proposed approach was the incorporation of

both the polynomial and non-polynomial dynamics. Moreover, the proposed method could deal

with both the bound and unbound ROAs. Finally, to support the applicability as well as the

superiority of the proposed method, numerical simulations were provided and the results were

compared with other studies in the literature.
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1 Introduction

Today, collaborative rating sites drive numerous decisions. For example, online shoppers rely
on ratings on E-commerce websites to purchase a variety of goods. Typically, the number
of ratings (such as user comments and star rating) associated with an item (a set of items)
can easily achieve hundreds or thousands, thus deciding over such a huge amount of data can
be cumbersome. Before making an informed decision, a user can either spend lots of time
researching dozens of ratings and reviews or can be satisfied only on an average overall rating,
associated with an item. There is no surprise that most users choose the second option because
of lacking time. For example, Digikala is an E-commerce site that sells a large variety of products
from electronic products such as mobiles, notebooks, etc., to apparel accessories. For each item,
users can leave their reviews, feedback about the item, their rating, and their experience with
that item. In the category browsing page, Digikala shows the number of reviews and average
ratings that users assigned to that item (e.g., see the figure 1). Users should read all reviews
or trust on average ratings while trying to decide which item is better to buy. Some useful
reviewers’ attributes such as gender, age, location, occupation, etc., can be useful for making
a better decision. Analysis of such data enables innovative insights in various scenarios such
as population studies [1], online recommendation [2], and targeted advertisement [3]. In this
paper, we propose an algorithm that groups reviewers based on their attribute values, and the
result will be shown by some description short sentences such as ”Young female students rate
this item 4”. For this end, we define reviewer groups by users attributes, such as reviewer group
{( gender,female), (age,young)}. We aim to find reviewers group sets by maximum descriptively

for a rating of records. We define the set of items by Z, and define the set of users (reviewers)
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Figure 1: Mobile category browsing page, number of reviews are indicated by red circles, and the total

average of ratings are indicated by blue rectangles.

by U. For given datasets of rating records in the form (i,u,s), where i € Z (the set of items

Digikala is an Iranian E-commerce company based in Tehran



Z. Abbasi, N. Akhoundi/ COAM, 4 (2), Autumn - Winter 2019 41

or products), u € U (the set of users) and s is the integer rating that user u has assigned to
item i. An user group is defined by conjunction of users’ demographic attributes over rating
records, such as male teachers or young students who live in Tehran. The problem of user
group discovering is to find group set of G including user groups such that some objectives are
optimized. In [5], the problem of user group discovery is modeled as the following constrained

optimization:

Min error(G),
S.T. covarage(G) > a, (1)
|G| < k.

where G is taken over all user group sets. error(G) is a function that computes the sum of
total distance between mean scores in each group and mean scores of rating records. Function
coverage(G) computes the percentage of covering the rating record I, by G. In [4], in order to
solve the problem of user group discovery, the constrained multi-objective optimization problem
is defined as follows: for a given set of rating records R and integer constants ¢ and k, the

problem is to identify all group-sets, such that each group-set G satisfies:

Max Coverage(G),
Max Diversity(G),

Opt. rDistb(G), (2)
S.T. |G|<k,
VgeG:|gl>o0.

where Diversity(G) measures how distinct groups are in group-set G. The last constraint
states that a group g should contain at least o rating records, an application-defined thresh-
old. Each group in G is a description of its attributes. For example, if a group G is
G = {{gender,female), (age,young)}, then G can be described as young female group. We would
like to focus on discovering user groups with more accurate descriptions. To achieve this aim,
our strategy is to find user groups with maximum descriptive attributes. In both optimiza-
tion problems (1.1) and (1.2), the number of attributes of the user group is not considered.
Sometimes, returned groups have their minimum number of attributes (only one attribute).
However, groups with more attributes have better descriptions. So, it can be a good idea
to find the optimal group with the maximum number of attributes. Maximizing the number
attributes (maximum descriptively) should be considered as an objective of the user group dis-
covery model. The rest of paper is organized as follows: Section 2 describes problem definitions.
Section 3 encompasses the basic definitions and concepts of user group discovery problem, and
our proposed algorithm. Finally some experiments are shown in section 4.

2 Problem Definitions

An E-commerce website like Digikala, comprises three main part. The first part is the set of

items (the set of all products) denoted by Z. The second part is the set of users, we denote by
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U. We denote by R the set of rating records. It is the third part of E-commerce website. Each
rating record r € R is itself a triple (i, u,s), where i € Z, u € U and s is the integer rating that
user # has associated to item i. In this paper this three parts are modeled as a triple (Z,U,R).
The set of items Z is associated with a set of attributes, denoted as Z, = {iay,ia,,...}, where
each item i € 7 is a tuple with Z4 as its schema. In other words, i = {(iv,iv,,...), where each
iv; is a set of values for attribute ia;. The schema for the reviewers is Uy = {uay, uay,...}, ie.,
u =<uvy,uvy,... >€ U, where each uv; is a value for attribute ua;. As a result, the tuple for i,
the tuple for u, and the numerical rating score s are joint by r = (i, u,s) which itself is a tuple
in the form (ivy,ivy,...,uvy,uv,,...,s). The set of all attributes is denoted as A = {ay,4a,,...}.

Definition 1. We define a group g as a set of {{ay,vy),{ap,v5),---} where each a; € A (set of all

attributes) and each v; is a set of values for a;.

The set of attributes g are denoted by A(g), and the number of rating records in g is denoted

by gl.
For example, in MovieLens datasets, the group

g = {(gender,female), (location,DC), (genre,romance)}

contain rating records for romance movies whose reviewers are all female in DC. We note that

A(g) = {gender,location,genre}.

Definition 2. Given a rating record r = (v{,v,,...,Vx,s), where each v; is a set of values for its

corresponding attribute in the schema A, and a group

8= ay,vi).<az,va),.... an vy} n <k,

we say that g covers r, and denote by r <g, if and only if Vi € [1,n],3r-v; such that r-v; is a
subset of values for attribute g-a; i.e., r-v; Cg-v;.

For example, based on Definition 2, the rating (female,DC,student,4) is covered by the
group {{gender,female), (location,DC)}. The set of all possible groups form a lattice where
nodes correspond to groups and edges correspond to parent/child and ancestor/descendant
relationships. In Figure 2 a partial lattice for rating records of the movie Toy Story(1995) is
illustrated. We have four reviewer attributes gender, age, location (CA stands for California)
and occupation to analysis. For simplicity, exactly one distinct value per attribute is shown.

The complete lattice contains 15582 attribute-value combinations, see for example [4].

Definition 3. We say that two groups g; and g, are similar and denoted by g; ~ g, if and
only if A(g1) = A(g2)-

We have the following two lemmas, proof of them is straightforward, so we omit them.

Lemma 1. Let g; and g, be two groups, define B| ={r e R|[r < g1},B, ={r e R|lr < g,}. If g&o C g1,
then we have By C B,.

Lemma 2. Let g; and g, be two groups and h is some arbitrary group differ from g; and g».
Define Cy ={reR|r<hAr<g}, Co={reRlr<hAr<g}. If g Cg then C; CC,.
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{male, young, CA, student}

#records=2
- -
[male, young, {male, young, {male, CA, {young, CA,
CA} student} student} student}
#records=268 L4 #records=13 |4 #records=17 || #records=2
|male, young} {male, CA} S{umda;‘” | [young, CA} N S'i?é’gr%} stLCc:i‘:Ht}
#records=1588 | | #records=477 #records=375
H #records=120 H [ #records=13 H| #records=20
[male} youngl || [CA} [student}
#records=2634 | | #records=2147| | #records=664 #records=184

i
#records=3662

Figure 2: Partial lattice for movie Toy Story.

Before formalizing the mining problem, quality dimensions should be defined for groups.
For a set of rating records R C R and a group-set G, the percentage of rating records in R
contained in groups in G is measured by a quality dimension called coverage. Coverage is a

value between 0 and 1 and it is defined as follows.

|Ugeg {r e Rr < gl

coverage(G,R) =

Another quality dimension is called diversity. Diversity of G is a value between 0 and 1 that

measures how distinct groups in group-set G are from each other, is defined as follows

1

1+ Y lfreRr<g Ar<gll
81,82€G

diversity(G,R) = . (4)

For a group set G, we define the number of attributes as following,
attributes(G) = |Uge A(Q)l, (5)

for example number of attributes G = {gy,g,} where

g1 = {{gender,male)}, g, = {(gender,male), (occupation,student)},
is
|{gender} U {gender,occupation}| = 2.

Group sets that have more attributes provide users with more information to make their deci-

sions.
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3 Maximum Description Optimization

We define our constrained optimization problem as follows: for a given set of rating records R,
the problem is to identify all group sets, such that each group set satisfies:

Max attributes(G),

S.T. coverage(G,R)
diversity(G, R)
|G| > k.

>
=

a
P (6)

Definition 4. Let g is a group and G is a group set, we say g <G, if and only if Vhe G, h » g,
and there are § € G such that gcg. we denote by G;g a group set that was constructed by
replacing ¢ with ¢ in G, i.e., G‘;g =G-{guU{g}

Theorem 1. If a group set G has the following two properties

V81,82€G, &1 * 8 (7)
There is no two groups, g;,9, € G such that g C g, (8)

then for some group g such that g < G, the following statements are holds.

1. attributes(G(;g) > attributes(G).

2. coverage(Ggg) < coverage(G).
3. diversity(Ggfg ) > diversity(G).

Proof. By definition 4 there exist, § € G such that § C g. We have A(g) C A(g), hence |J A(h) C

heG
U A(h) hence
heGé;g

attributes(G%) = | U A(h)|>|UA(h)|:attributes(G).
hEGgg heG

This is complete the proof of the first part. For section 2, by lemma 1 |J {r € R|r < h} C {re
heG heG

R|r < h} hence coverage(Ggg) < coverage(G). Lastly by lemma 2 we have

Z freRr<g  Ar<gl < Z freRr<g  Ar<gll

1,826Gg* 81,.82€G
hence
diversity(G,%) = 1
AR > _|{T€R,r<g1/\r<g2}|
81,.826Gg*
1
2 = diversity(G).
1+ Y JfreRr<g Ar<gl y(G)
81,82€G
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Remark 1. The group sets that contain one group with one attribute satisfies in (7) and (8).

Based on theorem 1, we can develop an algorithm with smart search to find local maximum
of optimization problem (6). For example in partial lattice of Toy Story movie (see figure 2),
we can set G = {g;} as an initial solution, where g; = {(gender,male)} (g; is a group with one

attributes and maximum coverage). Three parent nodes of g1, are as following:
e h; = {{gender,male), (age,young)}
e hy = {{gender,male), (location,CA})}
e h3 = {{gender,male), (occuption,student)}.

We see that h; < G for i = 1,2,3. Hence based on Theorem 1, for each h; where coverage(G,;gl) >
a, new group set G;lfgl is better than G. If there is no such group, then G is a local optimal
solution of optimization problem 6, otherwise we can choose hy = arg maxi{coverage(G;Ifgl )} and
substitute G with a better solution G;lfl.

3.1 Algorithm

The algorithm is started with initial groups that have one attribute. These groups are chosen
based on the best coverage. Let the groups by one attribute (penultimate level of the lattice,

e.g., see Fig. 2) are ordered as follows
coverage(g;) > coverage(g,) > ... > coverage(g,). (9)

Based on Theorem 1, we search in parent lattice of groups to increase the number of attributes
as long as coverage condition is satisfied. Our algorithm is described in details in Algorithm
1. The pseudo-code of algorithm 1 works as follows: In line 1, the parameters of a,m are
given. In line 3, the initial group sets are generated as defined in (9). In lines 4-15, the search
step is performed over the m initial group sets to find the local optimal solution. We know
that in group set G, if we let h is a parent of some group g € G, then it is easy to show that
h < G. The search procedure is based on parent searching because of several reasons. The first
reason, since the initial group set G satisfies the requirements of (7) and (8), and h is a parent
of g € G, the group set G,;g satisfies these requirements too. Secondly based on Theorem 1, we
see that attributes(G;lg) > attributes(G), so if coverage(G;g) > « (Line 9 algorithm), then G;g
is better solution than G. Finally, we can describe the parent-based search procedure in detail,
as follows. The search procedure was performed for each initial solution in the for-loop in line
4. For each initial solution, until convergence occur, we find a group % in parent latt(ilge—based of
8

)

> a. If there is no such group, then G;" is a local

G;k) in line 8 that satisfies in coverage(G,
optimal solution, and in line 14 we add it into the local optimal solution set Gopi. Otherwise
the solution G;k)

local optimal solution inside Gop; is selected and return in line 17.

is replaced by the current better solution G,_lg. Finally, in line 16, the best
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Algorithm 1 Lattice search algorithm

1 Data: a,m

2 Gopr + 0
Initialization :

3 Fori =1,...,m Choose initial group sets GEO) = {g¢;} (as defined in (12));
Search Step :

4 fori=1,....,mdo

5 for k=0,1,2,3,... do

6 G = ng);
7 opt = true;
8 for g € G and Vh in parent lattice-based of g do
9 if coverage(G,?) > o then
// Replace ng) with better group set G,
10 G G,
// G isn't local optimal solution
1 opt = false;
12 break;

// Check if ng) is optimal solution

13 if opt == true then
14 Gopt.add(ng), attributes(GEk)));

15 break;

16 let (G', attributes(G')) be the pair with maximum number attributes in G op¢;

17 return G';

4 Experiments

Real datasets, MovieLens, have been used for our experiments. For each user, gender, age-group,
occupation, and zip code are provided. The MovieLens 1M datasets contain 100000 ratings of
3952 movies by 6040 users. The attribute of gender takes two distinct values: male or female.
The numeric age is converted into categorical attribute values, namely teen-aged, young, middle-
aged, and old. 21 occupations such as student, doctor, lawyer, etc are also listed. Finally, zip
codes are converted into the USA states (http://zip.usps.com). Thus, 52 distinct values can
be taken for the attribute location [3]. Five items are selected randomly and then, the groups
are provided by our algorithm (Table 1) that we assume a = 0.8, = 0.8,k = m = 2 and DEM
method [5] (Table 2). In Table 1-2 the column Cov, Natt, and Div denote coverage, number
attributes, and diversity respectively. The algorithm was written in PHP and Laravel. The
algorithm is freely available as a Laravel package in https://github.com/NARooshnavand /user-
group-discovery.
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Table 1: Our Algorithm

Id | Cov | Natt | Div Optimal group set
73 | 0.804 4 1 First group={ young student women in California}
Second group={men}
200 | 0.801 3 1 First group={ young student women}
Second group={men}
500 | 0.806 3 1 First group={ young student women}
Second group={men}
600 1 4 1 First group={ old administer men in California}
Second group={old educator men in Seattle }
821 | 0.818 4 1 First group={ old educator men in Texas }
Second group={ young }
Table 2: DEM Algorithm
Id | Cov | Natt | Div Optimal group set
73 | 0.812 4 1 First group={young women in California}
Second group={men}
200 | 0.908 2 1 First group={men}
Second group={young women}
500 1 1 1 First group={men}
Second group={women}
600 1 4 1 First group={old administer men in California}
Second group={old educator men in Seattle}
821 | 0.812 3 1 First group={middle-aged men}
Second group={young}
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1 Introduction

The mathematical concepts, according to Dane, Faruk Cetin, Ba & Ozturan Sacgirulili (2016),
have complex, abstract, and hierarchical levels. In formal education, we face an increase in these
aforementioned levels of mathematical concepts and also the class level(Cetin, Dane & Bekdemir
(2012)). Also, The fragmentation of the students’ thinking structure had been shown by Adi
Wibawa, Nusantara, Subanji & Parta (2017) in solving the problems of the application of the
definite integral in area. For all students and especially university students, the integral and its
related concepts are one of the important, fundamental, and necessary topics in learning basic
mathematics. On the one hand, the integral is an Irrefutable tool in solving applied problems
for university students, especially in the majors of basic sciences and engineering (Dancis,
2001). The mathematics education system in Iran is planned in such a way that in the last
years of high school and the first year of university and after learning the concept of derivative
and differential, students get acquainted with the concept of integral with an overemphasis
on a symbolic form of the primary function (anti-derivative), in contrast, they should be first
introduced to integral with the conceptualization of perimeter and area symbolic form, the
Riemann symbolic form or by the adding up pieces symbolic form. Therefore, considering
the approach taken by teachers and professors, the ability of students to solve routing integral
problems is far greater than their ability to solve practical issues, and even these routine integral
problems are solved with numerous procedural errors. Now, we look to analyze these problems
and identify their roots and offer solutions where it is possible. Experience has shown that
Iranian students learn integral superficially and like a parrot; their goal is to learn how to
calculate an integral. However, the teaching method of professors is also useful in this regard.
According to the above issues, several studies have been conducted worldwide regarding the
issues students face in integral problems; one of the best studies has been done by Seah Eng Kia
(2005), also Avital & Libeskind (1978), Ronaldson (1963), Chou (2002), and Everton (1983)
have done some research and presented their results for their own countries and with different
samples; but unfortunately, nothing fundamental has been done in this regard in Iran. With a
thorough study of these researches, it can be said that students have a fundamental problem
in conceptualizing integrals using Riemann sum or the sum of infinite rectangles. For example,
Thomas & Yi (1996) sought to examine the misconceptions of learners when confronted with
the Riemann integral, and they found that learners do not have a precise understanding of the
Riemann integral and use an algorithm-based learning process to solve problems. We are now
looking to localize the work of previous people, especially S.E.Kiat, in Iran and implement it
following the Iranian educational system and reference books. Therefore, we have modified the
test he has designed with a little reduction and change in order to analyze the students’ problems
and students’ mistakes for solving integrals. In order to achieve this goal, we implement the
conceptual framework of S.E.Kiat, which itself was developed from the interrogative framework
of Ronaldson (1963), Libeskind (1978), Everton (1983). This developed interrogative framework
is given in Appendix (I).
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2 Research Methodology and Participants

Students participating in this research have selected from 280 engineering students who study
at Islamic Azad University of Mashhad, such that at first, these students were trained for
two semesters in pre-university mathematics and general Math I and II, (their training in
these lessons based on the proposed exam include all details and preparations). All have
participated in two midterm and final exams for each lesson, and after reviewing the results
of these exams, and examining their high school education records, fifty students were selected
who the selected students are among the average students in the field of mathematics. The
present study was conducted after the passing of these students in General Mathematics 2
and was carried out in the second semester of the 2018-19 academic years in the Islamic Azad
University of Mashhad such that fifty students majoring in engineering and sciences (physics and
chemistry) and of which ten students are electrical students, ten students are civil engineering
students, ten students are mechanical students, and the rest are physics and chemistry students.
There were ten students in each field and a total of 30 male and 20 female students. All these
fifty people have been trained with the same teaching method in the calculus 1 and 2 and have
an average score of 13 in the calculus 1 and 13.5 in the calculus 2 (Scores in Iran’s universities
are calculated from 20). They have also taken introductory physics courses. Since the research
follows the responses from the number of students in terms of the number and type of errors
that are made in integral problems. In order to study the above topics carefully, we based
our research on the observation and through a descriptive method-exposed factor of this fifty
students who are currently studying the major. On the other hand, we have proposed an exam
with eight problems in the first phase. In the second phase, eight problems are studied in
terms of content validity by six professors of pure mathematics and mathematics education in
the Islamic Azad University of Mashhad. With regard to views and content validity indexes,
three questions are accepted finally (see Appendix II). Note that the purpose of each question
is different, and some questions are designed for different purposes. Nevertheless, it can be said
that the main primary purpose of the questions is to examine the level of students’ capability
in solving integrals, which are based on the primary function and Riemann or infinite sum
of rectangles. Other minor goals include the ability of students to solve in solving integrals
that have different powers of x. (Objective I), which is also pursued in the second and third
questions, and another goal is to study the ability of students in solving integrals of functions
as (a+bx)", as well as trigonometric and exponential functions (Objective IT) and the study of
students’ ability in using certain integrals to calculate the area of the next objective (Objective
III). We note that while pursuing the above goals, the basic necessary skills of students are
also examined. Also, all problems have taken from Apostol (1967). The reliability of all six
problems is proved on the same samples of students then its reliability is determined that was
more than 0.75. Participants were asked to present their responses along with the complete

explanation of their responses’ details in (written manners).
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3 Data Collection

The above test consists of two stages. One is a written test in which all students have partic-
ipated, and the other is an interview with some of them based on their written answers. The

students interviewed often fall into one of three categories:
e Students who have given complete answers to the questions.
e Students who have performed poorly in solving questions.

¢ Students who have an excellent educational background but had a disappointing perfor-

mance in answering questions.

Each session held in presence of four persons that one of them is a student participating in the
interview and three interviewers who are experienced and successful faculty members in the
department of mathematics, Islamic Azad University of Mashhad. It is important to mention
that the students’ oral responses to the problems were much longer than what would come, but
we tried to convey their meaning as much as possible. The interview has done through questions
that proposed by one of the authors about solving integral’s. The interview was purposeful, i.e.
the interviewer presented questions according to their possible responses to get nearer to the

purpose of the interview. The following items were considered in the test:
e The test was taken simultaneously from all 50 people.

e Before the exam, students are informed to have enough time to study and prepare for

the exam.
e The duration of the written test is 1 hour.
e The interviews were filmed for accuracy in and later analysis.
o Before the interview, each student is allowed to think about their answers.

e An attempt has been made to conduct a fully structured interview, i.e., the questions have
been designed according to the written answers of students and their assumed answer to

the interviewer’s questions.

4 Results and Related Discussion

A summary of the written test results is given in Table 1.

Note that the score of each question is calculated according to the types of error that students
may make for solving it, which is listed in Table 1. By studying the above table, we see that 20
students have solved question la entirely and accurately, and 10 have solved more than half of
it. In other words, 60% of students answered question la, so it can be said that students can
solve integrals of the functions (a+ bx)" even though they have difficulty writing the details.
Also, regarding the integration of trigonometric functions that are included in the first question

of part 1bi and 1bii, only 32 people were able to solve it, among which only 20 people solved
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Table 1: Test results summary

Percentage pass Number of students who scored (in%) S.D. Main Total mark Q

100 50-99 0-49
60% 20 10 20 1.92  2.66 5 la
44% 15 7 28 1.48  2.52 5 1bi
20% 5 5 40 1.28 1.8 5 1bii
50% 15 10 25 1.59 295 5 1biii
46% 5 18 27 2.6 3.72 7 2
20% 3 7 40 1.8 1.64 7 3

these two questions accurately, and 12 people were able to solve more than half of it. In other
words, in these two questions, they performed much worse than in question la. In fact, by
examining their answers, we find that in integrating trigonometric functions, many students
have used derivatives instead of integrals (the most common procedural mistake), which is
due to the lack of accurate and complete conceptualization of integrals and their incomplete
understanding of functions; and that is why some students have written 2sin(2x—1) in response
to question 1bi. In question 1bii, they have not been able to use the trigonometric formulas to
convert the function under integral and then integrate. They have made numerous mistakes in
solving it, and therefore have the lowest efficiency among the questions. Only five people have
been able to solve this question completely. On the other hand, we note that in this question,
how to perform calculations is also essential, and students have answered this part of the
question almost acceptably. In question 1biii, in which the integration of exponential functions
is included and aims to examine the performance of students, we see that only 15 people were
able to thoroughly answer it and 10 people managed to solve more than half of it. They had
a more satisfying performance compared to questions 1bi and 1bii. We should note that some
people have made some procedural severe mistakes (using the derivative instead of the integral).
In general, and by analyzing the first question, we can say that the performance of students
in integrating functions of (a+ bx)" is much better than integrating exponential functions, and
their performance in integrating exponential functions is much better than that of trigonometric
functions and they make fewer mistakes. However, there have been interrogative and technical
errors in doing all four sections of this question. In the second and third questions, students’
skills in solving definite integrals and mainly calculating the area are considered. According
to the given function, integration of different powers x is also considered (Objective I). By
studying the table, we see that due to the closeness of these two questions, the way students
have answered them is so different; such that students answering the third question are less than
half of the students who were able to answer the second question, i.e., 42%,20%. Only 10% of
students were able to answer the second question thoroughly, and only 6% of them managed to
answer the third question accurately. In fact, in the second question, the analysis of the answers
shows that they did not understand the need to draw a graph of the function and even marking
it, and went straight to integrating the function (x*> —4x) at a distance of x = 0 to x = 5 and
have not recognized that part of the function graph is above and a part of it is below the x-axis.
Regarding the third question, they had to calculate the ratio of the two hatched areas, and
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again, there is a part above and a part below the x-axis. Even the diagram of this question is
presented, and yet again, students had many problems. They had the weakest efficiency in this
question, such that some were not able to calculate the area under the x-axis, some had difficulty
in determining the integral boundaries, and some did not know from which function they should
integrate, which all three refer to fundamental weaknesses in the conceptual understanding of
integrals. In general, it can be said that students perform much better in problems that directly
require integral computation than problems in which the application of integrals is considered.
In fact, in performing direct definite and indefinite integrals, they have a relatively better ability
than using integrals to calculate the area. Nevertheless, the exciting thing is that they easily
integrate different x functions.

5 Error Analysis

The types of mistakes made by students in solving the test questions is shown in Table 2.
Examining Table 2, we see that the most technical errors occurred in the first question, However,

Table 2: Type and quantity of errors made by students

ZERO No Errors Technical Errors Procedural Errors Conceptual Errors Q

0 20 7 20 3 la
0 15 6 24 5 1bi
1 5 30 11 4 1bii
3 15 6 22 4 1biii
0 5 4 8 32 2

1 13 5 28 3

5 63 66 90 76 Total

the interrogative(Conceptual) errors occurred in the second and third questions, and there are
procedural errors in all the questions. Column zero in Table 2 also means that students did not
answer the question. The table above shows that students committed 76 interrogative errors,
90 procedural errors, and 66 technical errors. For example, the first interrogative error occurred
in question la, where students had to calculate the integral of function 2(3 + 4x)47 and three

persons made this error by using 3 in the answer instead of 5, for example. Hirad replied that:
2
Jz(a +4x)tdx = Z(3+4x>3 +C,

Hirad combined the derivative and the integral and provided this answer, but since only three
people made such a mistake, it can be said that most of them understood this question. Table
2 also shows that most of the interrogative errors occurred in the second and third questions.
Even though the graph of the function and the regions are presented, most of the students have
had problems calculating the area under the x-axis and have used either the wrong bounds or
the wrong functions to solve these questions. For example, Negin wrote this in response to the
third question:
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2 4
SA:_[ (x2—6x+8)dx+j (8—2x)dx
0 2

x3 2
:(——3x2+8x) —(8x—x2)
3 0

64
(?—12+32)+(16—12):...,

4 3 4
SBZJ (x2—6x+8)dx:(——3x2+8x)
2 3

64 8
= (—-12+32)—(= —-12+16])="---.
(3 +32) (3 + 6)

2

When we ask Negin why she used these two integrals to calculate zone A, she points to the
area between the diagonal line and the curve and says that we have to calculate this part, and
therefore, we have to take integrals from these two functions. Hence, this mistake is due to the
lack of precise and complete conceptualization of definite integral in her mind. Even though
we continue to guide her on how to calculate the area of zone A, she insists on her answer.

Hooman also wrote this in response to this question:
4 4
2
Sa :J- (8+2x)dx = (8x+x )0 =32+16=48
0

4 3 4
SB:J (x2—6x+8)dx=(%—3x2+8x) =,

2 2
Hooman’s answer in calculating area B is the same as Negin’s answer. Both made the same
mistake in not understanding that the function negative and under the x-axis, but in calculating
area A, Hooman acted very differently and ignored the curve function; when discussing with
him how to calculate the area of A, the extreme lack of conceptualization of the integral is
evident in his mind, whereas we note that if only the linear function y = 8 + 2x was involved in
calculating the area of A, he could have easily calculated it. Hooman: To calculate the area A,
it is sufficient to integrate the function y +2x = 8 at a distance of 0 to 4. (points to the hatched
part between the line and the x-axis.) Interviewer: But how do we calculate the part between
the function y + 2x = 8 and the curve y2 — 6x + 8: Hooman? After about 3 minutes of thought
and silence, Hooman only states that it is no different from before and that we must integrate

directly from the linear function. Mahshid’s answer to the second question is as follows:
5 3 5
125
S =f (x2—4x)dx: (x——sz) =———-50=---.
0 3 o 3

Mahshid did not understand that part of the x? — 4x function is below the x-axis and that she
has to integrate it twice, and when we ask her the reason for this action, she says: “There is no
need to mark the function or even draw it, and I did not think at all that such a thing could
happen, but now I remember a similar problem that I solved before and I should have done
this.” We find that if Mahshid had marked the integral, she could have solved the question
entirely. Table 2 tells us that the highest number of errors was the procedural error, which is
90 times. For example, Negar wrote this in response to question 1bi:
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1
fCos(2x— 1)dx = ESin(Zx— 1).

Besides Negar, 20 other people have made the same mistake and have not written the constant
value of C, and in response, they only say that they forgot; in fact, it can be said that they do
not have an exact concept of this constant C in their minds that will help them not forget. In

the same question, Hamin has written this:
fCos(Zx— 1)dx=-2Sin(2x-1) +C.

Although she wrote C, she has used the derivative instead of the integral (this is the most
common type of mistake) Negin has given the following answer to question 1biii:

Je(2x+3)dx — 2e2x+3'

Here, in addition to using the derivative instead of the integral, Negin did not write down
the constant C and made two mistakes at the same time. and In response to why she used
2 instead of 1/2, she immediately admitted her mistake and said that she had mistaken it for
the derivative. Examining all the answers, we find that students often have problems in the
process of calculating integrations in a direct way, which depends on the conceptualization of
integrals based on the primary forms of the functions such as trigonometric or exponential ones.
Hence, and they use the derivative instead of the integral. Regarding the third type of error,
i.e., technical errors that have occurred 66 times in the all test, we can say that the main reason
is the lack of sufficient information in other mathematical fields such as algebra, geometry,
trigonometry, or even carelessness. These errors have nothing to do with the correct and
accurate conceptualization of integrals by students. Whether the conceptualization is complete
or not, these errors may occur, while it can be said that students with fewer conceptual and
procedural errors certainly make fewer technical errors. However, because technical errors make
it impossible to answer the questions related to the integral fully, they are worth reviewing.

Hesam has written this in response to question la:
4
J2(3 + 4x)4dx = 2J‘(34 + (4x)4)dx = 2(34x + gxs) +C.

insufficient knowledge of algebra has caused this error. In response to question 1biii and due to
weakness in trigonometry and lack of sufficient information in this field, Kimia did not know
that Sec? x = 1+ Tan’x and used 1+ Sec? x = Tan’x and has written the following:

5 3 ) x
f Tan® 2x dx = f (1+Sec 2x)dx:(x+tan2x)02 =—.
0 0 2
(Note that there is also a procedural error in this question) In response to the second question,
Zohreh did not pay enough attention as well and has written the following:
5 3
125
S :f (x2—4x)dx: x—+4x2 = —+100.
0 3 3

She also forgot to divide 4 by 2. When we ask students about these issues, they immediately
realize their mistakes and correct them. Finally, Table 3 provides a list of all the mistakes
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Table 3: Types of mistakes

Errors Description Numbers
Combining derivatives and integrals 3
Conceptual) Not recognizing the need to mark the function 29
(Interrogative) Failure to select the correct function 25
Failure to select the correct bounds 19
Procedural Failure to write the constant C 24
(Executive) Mistake between derivative and integral 66
Coordinate geometry 18
Computational Algebra 16

Technical

Trigonometry 15
Inaccuracy 17

students made during the test and the interview that followed. Examining Table 3, we find
that most errors are procedural ones. One of the most important reasons for this error is
the use of derivatives instead of integrals, which can be related to lack of experience in this
field, which itself is because of not having enough practice. The type of error lease made by
the students was a technical error, which means that if students were taught to conceptualize
integrals more wholly and accurately, they would be more able to solve problems. Finally, we
point out that although students are among the average students at the university under study
and even though they were given enough time to study before the exam, they are still weak in
the field of integral and have much work to do.

6 Discussion

Considering the conditions and questions of the exam and the interviews conducted and also
considering that only 50 people have participated in this exam and they have also been selected
from average students, we cannot say that this exam is a complete, accurate and perfect test and
therefore performing similar tests in this subject is always recommended. We also need to look
at how integrals should be taught and how students should learn them. However, it can be said
that in general, students have a fundamental problem in understanding integrals. They should
be re-taught the basic concepts related to it, and its prerequisites, especially the derivative,
before the subject of integral is brought up. Although the fact that teaching hours in Iran are
limited in these subjects, and it is not possible to emphasize the prerequisite topics should be
considered in this regard, one solution can be to hold extracurricular or problem-solving classes
in this field because basic concepts like algebra, geometry, and trigonometry are important
concepts for understanding integrals correctly and the large number of technical errors made
by students shows the importance of these concepts. On the other hand, teaching mathematics
in Iran, especially in the first year of university, is done without the necessary and sufficient

emphasis on drawing diagrams and various graphs of functions and this subject is discussed in
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a maximum of 2 hours and is very vital and essential for learning the concept of integral and
determining and calculating different areas of different functions, and is taught to strengthen
students’ visual perspectives so they would not make many mistakes in solving relevant inte-
grals. In other words, useful emphasis on visual explanations by teachers and strengthening
students’ visual perspectives facilitates the interrogative comprehension of integrals. However,
if all these subjects are completed, the test will show us that students have difficulty in con-
ceptualizing and understanding integrals, the many procedural errors made prove this, and in
other words, their interrogative understanding of integrals is incomplete, especially since in
Iranian universities, and especially for engineering students, integrals are often conceptualized
through the primary function, and the emphasis is on calculating the integral rather than un-
derstanding its concept, so terrible mistakes have occurred in calculating different areas and
even in choosing the appropriate bounds for the integral or in the selection of the appropriate
function to calculate the area using integral. Therefore, teaching methods and how to teach
students is effective in reducing students’ mistakes. For example, although the function dia-
gram for the desired area is given in the third question, students still have many interrogative
and procedural problems in solving the problem. Therefore, we emphasize that it is better to
conceptualize the integral with the help of Riemann’s concept or the summation of infinite ar-
eas. With the help of the primary function, it was found in the interviews that many students,
unfortunately, read mathematics to write, so we emphasize the importance of strengthening
the communication skills of writing compared to the communication skills of reading in stu-
dents. One suggested solution is to write an example of calculating a finite area for students
and force them to provide a written answer, and then ask them to discuss their answers so
that they can understand the integral. Writing mathematics greatly reduces a variety of errors,
primarily procedural and technical ones. Note, however, that the most massive largest error
made by students participating in the test is procedural errors that are caused by mistakes
in using integrals and derivatives, which requires much emphasis when teaching this subject.
The main suggestion is to use derivatives and integrals parallelly so they will become engraved
in the minds of students. Finally, although integral is one of the most essential concepts in
mathematics for students, especially in the field of engineering, on one hand, many of them are
dealing with the fundamental difficulties with this concept to understand. On the other hand,
they do not have any outstanding effort to learn it (why? Of course, there are many reasons

for this issue that are beyond the scope of this research article).

Appendix I: Classification of students’ errors
Appendix II: Test on Integration

First question:
a) Solve this integral: j2(3 +4x)tdx.

b) Evaluate the following integrals:
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Error type: Description of the error with an example

Calculate the area between the curve y = x? —4x

Conceptual error: and the x-axis from x=0to x=5

J (- )= (5 227 =

They did not realize that part of the curve is

Errors due to inability of learners to understand the
relations in the question or due to their inability

to understand its meaning.
below the x-axis.

Procedural error: ) 2
jtan 2xdx = I(Sec 2x—1)dx

Error due to inability to perform calculations or 5
. K ) . ) tan“2x-x+C
algorithms despite learners’ understanding of e 1 . ) .
- Not writing 5 behind the tan“2x function

the concepts in the question.

Technical error: f2(3 +4x)%d = j(6 +8x)*dx

5
Error due to carelessness or lack of sufficient = (6;32;) C
information on other issues. Wrong multiplication of (3 + 4x)

i) Icos (2x—1)dx,
ii) Ion/z tan?2xdx,
iii) |el?*3dx.
Second question: Find the area bounded by the curve y = x? —4x and the x-axis from x = 0

to x =5. Third question: The following diagram shows a part of the line y + 2x = 8 and the
curve of the function y = x> —6x+8. Find the ratio of the area of zone A to the area of zone B.
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1 Introduction

Throughout this paper, let G be a simple graph with a set of vertices V = V(G) and a set of
edges E = E(G). Let uj,uj € V(G). If u; is adjacent to uj, we have u; ~ u;. The k-coloring
of G is an appropriate form of k colors to V(G) such that no two adjacent vertices have the
same color. The smallest number k with this property, denoted by x(G), is called the chromatic
number of G. A clique of G is a complete subgraph of G and the cardinality of the largest clique
of G is called the clique number of G and denoted by w(G). A graph G is called weakly perfect
if x(G) = w(G). Maimani and et al. [4] introduced a class of such graphs. Nikandish and et al.
[5] presented a graph of ideals that are weakly perfect. The graph is perfect if every induced
subgraph is weakly perfect. Hence, every perfect graph is weakly perfect and there are several
classes that indicate that the converse may not hold in general. Fander [3] introduced a new
class of perfect graphs.

Let S C V(G). Herein, S is an independent set if the maximum degree of the subgraph induced
by V(G) is zero. Independent number, denoted by a(G), is the maximum cardinality of any
independent set. It is trivial that vertex S is a clique of G if and only if it is an independent
set of G. Thus, a(G) = w(G).

A topological index is a numerical quantity that is invariant under automorphisms of the graph.
The topological index based on the distance function was first used by H. Wiener [7]. If
u,v € V(G) are two different vertices, then d(u,v) is the length of the shortest path between u

Y dww) (1)

u,veV(G)

and v. Therefore, the Wiener index of G is:

W(G) =

N =

Suppose that R is a commutative ring with identity and W(R) is a set of non-unit elements of
R. Afkhami et al. [1] defined the Cozero-divisor graph of R, denoted by I'’(R), with vertices
W(R)* = W(R)\{0} and x,y € W(R)"(x # v); then, x ~ p if and only if x € Ry and y & Rx where Rc
is an ideal generated by ¢ € R. Suppose that M is an R-module and Wx(M) = {x € M | Rm = M}.
With R as R-module, Wg(R) is a set of all non-unit elements of R. Alibemani et al. [2] introduced
Cozero-divisor graphs in relation to R-module M in which vertices are Wr(M)* = Wr(M) \ {0}
and m,n € Wg(M)*(m = n) and then, m ~ n if and only if m ¢ Rn and n ¢ Rm. The mentioned
authors studied the properties of this graph.

The next section introduces a new class of graphs arising from weakly perfect modules. More-
over, a formula is presented for x(G) and w(G) of such graphs. In Section 3, The Wiener index
of such graphs is calculated.

2 Weakly Perfect Graphs of Modules

This section defines a scalar product graph of the module and shows that it is weakly perfect in
some cases. The definition of the join of two graphs needs to be noted here. Suppose that X and
Y are two separate graphs. X+Y is join of X and Y with a set of vertices V(X+Y) = V(X)UV(Y)
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and a set of edges E(X+Y)=E(X)UE(Y)U{xy:xe V(X),ye V(Y)}.
In addition, | V(X +Y)|=| V(X) |+ | V(Y)|and | E(X+Y)|=| E(X) |+ | E(Y) |+ | V(X) || V(Y)]|.
Also, for two graphs X and Y we have x(X+Y) = x(X)+ x(Y).

Lemma 1. Let G and H be separate graphs. Then a(G+H) = max{a(G),a(H)} and w(G+H) =
w(G)+ w(H).

Proof. Suppose that max{a(G),a(H)} = a(G) and S = {uy,uy,..., us(g)} is the maximum in-
dependent number of G. For any (u;,u;j), 1 <1i,j < a(G), i # j, and the edge u;u; is not
in E(G); thus, u;u; € E(G+ H). It is implied that S is an independent set of G+ H. Indeed,
a(G+H) = max{a(G), a(H)}. Now, for the converse, suppose that S’ is the maximum independent
number and the sum of graphs G and H. Then, S’ is not the subset of V(G) and V(H) contem-
porary. Suppose that S’ C V(G) and therefore, (G + H) < a(G) and a(G+ H) < a(H). Hence,
a(G+H) < max{a(G), a(H)}. Suppose that C is an arbitrary clique of G+ H. It can be assumed
that C = C; UC, in which C; € V(G) and C, C V(H). It is quite trivial that | C1 |< w(G) and
| C2|< w(H). Therefore, w(G+H) < w(G)+ w(H). Thus, We have w(G+H) > w(G)+w(H). O

Definition 1. [6] Suppose that R is a commutative ring with non-zero identity and M be an
R-module. We define the Scalar-product graph of R-module M, namely Gr(M), in which the
vertices of Gr(M) are elements of M and x,y € M(x # y) then, x ~ v is adjacent if and only if
there exists r belonging to R such that x =y or y = rx.

Remark 1. Let Gg(M) be a Scalar-product graph of R-module M. If x,y € M then x is adjacent
to p if and only if Rx € Ry or Ry C Rx.

Remark 2. According to the definition of the cozero-divisor graph over modules, we have the
followings:

(1) If M is an R-module, the subgraph of Gg(M) in which vertices are Wg(M)* is the complement
of the cozero-divisors graph of M.

(2) We have Gg(M) = Gy + G, where G is a complete graph with | Wp(M)* | vertices and G, is

the complement of the the cozero-divisor graph of M.

In the following, if Gg(M) is the scalar product graph of some R- module M, we compute
x(Gr(M)) and w(Gr(M)).

Lemma 2. Suppose that M is an R-module. Then, the scalar product graph Gg(M) is complete
if and only if the cyclic submodules of M are linearly ordered by inclusion relation.

Proof. Let M be an R-module and N; =< a >N, =< b > be two cyclic submodules of M in
which a # b in M. Since the scalar product graph Ggr(M) is complete, a and b are adjacent. We
have <a>C<b> or <b>C<a>and Ny C N, or N, C Ny. Conversely, Let M be an R-module
in which the cyclic submodules are linearly ordered by inclusion relation. If a # b represents
two vertices of Ggr(M) then <a >C<b > or < b >C<a>. Therefore, a and b are adjacent in
Ggr(M). Hence, Gg(M) is complete. O

Suppose that M is R-module and A, B are two non-zero submodules of M.Then, M is called
uniserial if A C B or B C A. Clearly, the valuation ring R is uniserial as a module over itself.

Also, submodules and quotients of uniserial modules are again uniserial.
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Lemma 3. Let Z, be a Z-module. If p,m are prime and positive integer numbers, then for
n=1,p,p™, the scalar product graph Gz(Z,) will be complete.

Proof. Let M be a simple module. Then, submodules of M are linearly ordered by inclusion.

Hence, submodules of Z, are uniserial. Through Lemma 2.5, the scalar product graph of Z, is

complete.

2 n-1 n
Also, an = pl,%zz D ;,é D 5,,% D...D pp”ZZ D 5,,% =0, here an is uniserial. Therefore its scalar
product graph is complete. O

Theorem 1. Suppose that p is a prime number. Then, the edge number of Gz(Z,,) is 2p? -
2p+1.

Proof. In Remark 2.5, we have Gz(Z,) = K, + G such that K, is a complete graph with p
vertices and G is the complement of the cozero-divisor graph of Z,, which is Ky, ;. By
definition 2.1, we have:

-1 -1)(p-2
| E(Gz(Zsp)) |= B + L2224 p2 = 2p2 — 2p 41 O

0

] .

Figure 1: Scalar Product of Z-module Z.

Theorem 2. Let Z, be a Z-module. If n =1,p,p™ and n = 2p, then the graph Gz(Z,) is
weakly perfect. Also, if n = 2p, we have x(Gz(Z,)) = w(Gz(Z,))=2p-1.

Proof. By Lemma 2.7, Gz(Z,) is a complete graph with n vertices. Hence, It is weakly perfect.
If n = 2p, then by Remark 2.5, we have Gz(Z,,) = K, + G, such that K, is a complete graph
with p vertices and G is the complement of cozero-divisor graph of Z;, which is Ky, ;.
Also, x(Kp) = w(Kp) = p and x(Gz) = w(Gy) = p—1. Therefore, by Lemma 2.2, we have
X(G2(Z2y) = 0(Gz(Zay)) = 29~ 1. =

Table 1 show clique, chromatic and edge number of the scalar-product graph of Z,,:

Theorem 3. Suppose that p is a prime number. Then, the edge number of Gz(Z3),) is %pz -
7
Pt 2.

Proof. By Remark 2.5, we have Gz(Z3,) = Kpp_1 + G3 such that Kj,_1 is a complete graph
with p vertices and Gj is the complement of cozero-divisor graph of Zs, which is K; , 1. By
Definition 2.1, we have:

2p-1)(2p-2 -1)(p-2
| E(G(Zsy)) = B2 1 4 L2 (2p—1).(p+ 1) = $p? - Fp+2 0
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Table 1: clique, chromatic and edge number of Gz(Z5))

p_ x(G) w(G) [EG)]
3.5 5 13
5 9 9 41
713 13 85

X
e o
S VST

Figure 2: Scalar Product of Z-module Z5.

Theorem 4. Let Z, be a Z-module. If n = 3p, then the graph Gz(Z,,) is weakly perfect. Also
x(Gz(Zy)) = w(Gz(Z,)) =3p-2.

Proof. 1f n=3p, then by Remark 2.5, we have Gz(Z3p) = Kyp_1 + G3 where Ky, 1 is a complete
graph with 2p —1 vertices and Gj is the complement of the cozero-divisor graph of Z3, which
is Ky p-1. Also, x(Kpp-1) = w(Kpp_1) =2p—1 and x(G3) = w(G3) = p— 1. Therefore, by Lemma
2.2, we have x(Gz(Z3p)) = w(Gz(Z3,)) = 3p —2. O

Table 2 shows the clique, chromatic and edge number of the scalar-product graph of Z3,:

Table 2: clique, chromatic, and edge number of Gz(Z3))

p x(G) w(G) |EQ)
5 13 13 97
7 19 19 198
11 31 31 508
13 37 37 717

Theorem 5. Suppose that p is a prime number. Then, the edge number of Gz(Zs),) is %p2 -

§p+4.

Proof. By Remark 2.5, we have Gz(Zs,) = Kyp_3+ G5 such that Ky,_3 is a complete graph with
4p -3 vertices and Gj is the complement of the cozero-divisor graph of Zs, which is Ky ,_1. By
Definition 2.1, we have:

| E(Gz(Zs,)) |= 4220008 1 g1 07072) 4 (4 3 (p+3)= Bp? - Lp+a. O
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Theorem 6. Let Z,, be a Z-module. If n = 5p, then the graph Gz(Z,,) is weakly perfect. Also,
x(Gz(Zy)) = w(Gz(Z,)) = 5p - 4.

Proof. 1f n = 5p, then by Remark 2.5, we have Gz(Zs,) = Ky4p_3 + G5 such that Ky, 3 is a
complete graph with 4p — 3 vertices and Gs is the complement of the cozero-divisor graph of
Zs, which is m. Also, x(Kgp_3) = w(Kgp_3) =4p -3 and x(G5) = w(Gs) = p— 1. Therefore,
by Lemma 2.2, we have x(Gz(Zs;)) = w(Gz(Zsp)) = 5p — 4. O

3 Wiener Index of Gr(M)

Suppose that G is a graph. The Wiener index of G is half of the sum of the distance between
two distinct vertices. For example, we have W(K,,) = %n(n —1) and W(Ky,,_1) = (n-1)%

This section computes Wiener indices of Gz(Z,,) and Gz(Z3,) for some prime p. Similar
to what we had before, the Scalar product graphs of Z-module Z;, and Z3, are the join of
complete graph and complement of a cozero-divisor graph. Therefore, we seek a formula for
the Wiener index of the join of two graphs.

Theorem 7. [8] For any two graphs X; and X,, we have:
W(X1+X) = VX)) P = VXD [+ V(X)) P = V(Xo) |
+H VXD V(X)) - E(X1) |- E(X2) |
Now, we have the following propositions.
Proposition 1. Suppose that p is a prime number. Then, we have W(Gz(Z,,)) = 2p? 1.

Proof. By Proof 1, the scalar product graph of Z,, is the join of K, and Kj ;. Thus, from

Theorem 7, we have
W(Kp +Ky,p1) =1 VK P = V(K [+] V(K ) P =1 VK p) |
+ | V(Kp) || V(Kl,pfl) | - | E(Kp) | - | E(Kl,pfl) |

1 1
=p*—p+p’—p+p’-2p(p-1)-5(p-1)(p-2)

=2p>-1.
O
Proposition 2. Suppose that p is a prime number. Then, we have W(Gz(Z3p)) = %pz +5p-2.

Proof. By Proof 3, the scalar product graph of Zj, is the join of Ky, 1 and K, 1. Thus,
according to Theorem 7, we have:
W(Kayp_1 + Ky p1) = | V(Kpo1) P = | V(Kypoy) |+ V(K por) P = | V(g po1) |
+ | V(Kprl) ” V(KZ,pfl) | - | E(Kprl) | - | E(K2,p71> |
=(2p-1)*=(2p-1)+(p+1)>=(p+1)



M. Nouri Jouybari, Y. Talebi, S. Firouzian/ COAM, 4 (2), Autumn - Winter 2019 67

Proposition 3. Suppose that p is a prime number. Then, we can have W(Gz(Zs,)) =

3p-

- 3(2p=1)2p=2)~[1+ 3(p~1)(p-2)

+(2p-1(p+1)
9,1
—Ep +§p 2.
O
Zp’+
4,

Proof. By Proof 5, the scalar product graph of Zs), is the join of Ky, 3 and Ky 1. Thus, from

Theorem 7, we have:

W(Kgp3+Kap1) =1 V(Kgp3) P =1 V(Kgp3) [ +1 V(Kgp1) P = V(Kgp) |
+1V(Kgp-3) | V(Kyp1) | = | E(Kagp3) | = | E(Kyp 1) |
=(4p-3)*~(4p-3)+(p+3)* = (p+3)

+(4p=3)(p+3)~ 5 (4p~3)(4p~4)~[6+ 3 (p~1)(p2)]
:2—25p2+ %p—4.
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1 Introduction

Model Predictive Control (MPC) is based on predicting the behavior of a system using its
dynamical model and optimizing the prediction to have the best decision. Due to this reason,
the dynamic models of the system play an essential role in solving MPC problems. A control
system is considered as a family of vector fields, and the dynamical system is the flow generated
by this vector field [1, 2]. Differential geometry is a new language of Lagrangian and Hamiltonian
Mechanics. In differential geometry, the state space of the system is modeled as manifolds, which
are locally diffeomorphic with Euclidean space. As a result, this method is a coordinate-free
method that applies to infinite-dimensional systems. Since mechanical systems are symmetric,
the states of the system do not change under a certain transformation; this criterion is expressed
by Lie group actions [3]. A Lie group that is a smooth manifold with a group structure, is a
mathematical concept appropriate for describing continuously varying groups of transformation
[3]. In [4], geometric mechanics of rigid bodies on a Lie group is expressed based on the
Euler/Lagrange equation of mechanical systems that are developed according to Hamilton’s
principle. A so-called Lie Group Variational Integrator (LGVI) method has been produced for
systems with a Lie group configuration space. The main target of LGVI is implementing an
exponential map representing the variation of a curve on a Lie group in terms of Lie algebra
element. This method is developed to acquire the discrete-time dynamic equations of the
system that preserves the Lie group structure. The main result of this method is that the
achieved update discrete-time equations are coordinate-free, namely, there is no need to choose
a specific local coordinate. This totally avoids ambiguity and singularity associated with local
coordinates [4, 5]. Considering the LGVI method to model the discrete-time update equations
of motions, preserves the conserved quantities of motion and therefore provides a more realistic
prediction model. As other standard integrating methods such as Runge-Kutta do not use
the group structure so that they are deprived of this property. The LGVI method updates
the rotational matrix by multiplying two matrices in SO(3), which guarantees the rotational
matrix still remains on SO(3) and preserves the conservative motion. [7, 6] provide other
types of variational integrator methods. The conventional MPC methods are usually applied
to systems with discrete dynamics on R” vector space. However, the configuration space of the
majority of systems is smooth manifolds which are not diffeomorphic to R". For designing the
predictive dynamics of such systems, the manifolds with limited dimensions are embedded in R”,
then standard integrating methods are implemented until the discrete updating equations are
achieved. Different methods of integrating system dynamics on manifolds have been developed,
see [7, 8, 9] for example. Development of the model predictive control design for dynamics
evolving on smooth manifolds is considered in [10, 11]. The method of linearizing and embedding
the system in R” has been used in these papers. Implementing the MPC-based LMI approach
is a technique for controlling plants with uncertainties. Since the optimization-based LMI
method can be solved in polynomial time, it is applicable to implement it in on-line optimization
problems [12]. Solving an optimization problem at each sampling time within a receding horizon
is the main contribution of MPC algorithms so that the development of optimization methods

improves the ability to solve MPC problems. In such issues, an optimization problem that is
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efficiently solvable via linear matrix inequality (LMI) can be extended to MPC. In this case, a
min-max optimization is solved, which computes the control law by minimizing a quadratic cost
function subject to constraints in worst-case at each time step. The issue of solving a min-max
optimization can be considered as a convex optimization with linear matrix inequality. Besides,
using the LMI optimization scheme with MPC at each time instant can incorporate uncertainties
as input and output constraints, and guarantees the robustness properties of the system at
the same time. Since Lie group variational integrator is one of the rigid body computational
methods that maintain Lagrangian/Hamilton structures as well as the structure of rigid body
configuration group, in this paper, the rigid body dynamics are implemented considering its
exact geometric properties using the LGVI method. As a result, the classical model predictive
control is generalized to the LGVI model of the system. The proposed method of applying
convex optimization for solving MPC problems using geometric considerations is applied to a
3D pendulum, which is a rigid body supported at a frictionless pivot acting under the influence
of uniform gravity with substantial invariant properties [13]. The novelty of this paper is using
the LMI approach for solving the MPC control of the 3D pendulum with a variational model.
This paper is organized as follows. Section II is devoted to the problem statement. Firstly, the
dynamics of a 3D pendulum using LGVT are expressed, and the linearized state-space model of
3D pendulum dynamics is extracted using infinitesimal variations of parameters evolving on a
manifold. Then, based on this linearized model of the system, a quadratic objective function is
introduced. Section III extends the standard MPC problem on Euclidean state space to smooth
manifold based on convex optimization using LMI. Simulation results are presented in section
IV to prove the efficiency of using LMI in solving MPC algorithms on smooth manifolds. A
comparison with the non-LMI method is also mentioned in this section. Finally, concluding

remarks are presented in section V.

2 Problem Statement

2.1 3D Pendulum Dynamics

The configuration space in a 3D pendulum is a SO(3) manifold. Geometric forms of Hamilton’s
equations of a 3D pendulum on the configuration manifold SO(3) using LGVI method have

been expressed in [4] as discrete-time forced Hamilton’s equation as follows

A 1

I = E(Fk]d ~JaFL), (1)
My = F{Ig+hMpgq +hBug,, (2)
Rir1 = RiFy, (3)

where Ry € SO(3) is a rotation matrix from the body-fixed frame to the initial frame denotes
the attitude of the rigid body at time k, IT; € R3 is the angular momentum of the pendulum
expressed in the body-fixed frame, Fy € SO(3) is a one-step change in Ry, J; is a non-standard

moment of inertia matrix and J; = %tmce(} )I =] where J is the standard inertia matrix. ”h”
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is the time step for the discrete system. In a 3D pendulum ./\T/lk =mgp XR£€3. The hat map

denotes : R — s0(3) that for a given vector w = ( w1, Wy, W3 ) represents the skew-symmetric

matrix
0 w3 (%)
O=| —w; 0 w1
(€] —W1 0

As in Eucliedaian spaces, a linear vector field can estimate the Hamiltonian vector field on
TSO(3) locally in an open subset of TSO(3), which is the tangent space to SO(3). Using local
coordinates in the neighboring of the equilibrium point is a method of linearizing the vector
field. To extract the linearized discrete Hamilton’s equation for 3D pendulum as discussed in
[14], a local exponential coordinate is introduced as local coordinates. The variation of the
rotational matrix R is an e-parameterized differentiable curve Ry . that takes value in SO(3), is
given by [4]

Rye = Ry exp(e ). (4)

The variation of matrix R is expressed as an exponential map that returns the variations across
the rotational axis 1 with angle €. 7(t) is a differentiable curve that has value on Lie groups of
rotational matrices and is identity in ¢y and t¢. The exp map is a local diffeomorphism between

Lie algebra and Lie group. Other parameters’ variations are also formulated as

A

Fie = Frexp(eéy),

ka = Hk + €5Hk,

where 01 is an infinitesimal variation of I'Ty. Infinitesimal variations of the motion can be

shown to be

d
ORy = —| Rp.=Ry1,
k dee:O k,e k Nk
SF, = d F..=F.¢&
k_dee:() ke — Lk Sk»
sl = 4| o - st
k—d€€:0 ke — k-

The infinitesimal variation of 0Rj,; can be expressed from two points of view. On the one
hand, the variation of Ry,; is calculated as infinitesimal variations of its parameters Ry, Fy as
follows

ORyy1 = ORgFy + RpSFy = Ry tji Fie + RiFieéy, (5)

on the other hand, its infinitesimal variation is calculated directly as

] d d .
ORyy1 = e E:ORkJrl,e =T 6:0R1<+1‘5XP(6 Ake1)
= 72| RiFrexp(eniir) = RiFes - (6)
€le=0

Then, the last parts of both equations (5),(6) can be equated, and the parameter 7;,; can be
extracted as
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ket = Ef 1 + &k (7)

Note: The relation RT#R = RTx is used. In fact, (7) is the constrained variation of the equation
Ri41 = RiFy. Since the linearized system should be in terms of the state variables [ Nk, OITg ]T7
&k should be replaced in terms of 1, and 0IT;. Due to this reason, & is calculated from (1).
Firstly, the variations of (1) are obtained as follows, since 6I1, dF) are not independent

A 1
ol = 3 (FJa~JadFy)
1 c c T
= E(Fkék]d +Ja&kFy)
1 —— .
= z(chkok]d + JaF{ Fe&p).
Note: £A+ AT# = (trace[A]lx; — A)X)
A 1 -~
olly = E((tmce(Fk]d)I3x3 = FiJa)Fiék),
i 1
ol = E(trﬂce(Fk]d)kxa = FiJa)Fi&k-
As a result,
&k = Pr oIy, (8)
where

Br = hF[ (trace(FiJa)lsxs — FiJa) ™' € RS,

By replacing (8) in (7) nx,1 is extrapolated as

Mk = F i+ o, 9)

which gives the linearized rotation matrix R in terms of its rotation axis #. The dynamical
equation (2) is linearized by substituting the variations of M. Since the torque My is related
to the attitude of a rigid body, its variation oMy is written as a variation of the rotational
matrix

oMy = My,
while M € R33 is expressed as the attitude of the rigid body and is attained by the potential
field. Using (8), (9), variations of My, is equal to
SMis1 = Miaitisr = Mt Ff i+ My BTl

As a result,

Ol =0F] TTj + EF 6Ty + hd My, 1 + hBOuy,,
=— & FITTy + FLoTTy + hMyy Ff g
+ hMji1 Br 01Ty + hBouy
= — (BT FL T + FF 6T, + h My FL gy
+ h M1 Br oIy + hBouy,
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SMgy1 =((FT L) Br + EF + hMy i1 r)oTTy (10)
+ th_,_ngfjk + hBéuk.

Consequently, the linearized system (1-3) is summarized as follows

Meet | Ax Bk | [ 0 ity (11)
5Hk+1 Ck Dk (‘)Hk hB ’
while,
Ay =F],
B = B,

Cr = hMy41 Ff,
Dy = Fl + (FIT1)By + h My, 1 B.

and, in a 3D pendulum

OMj = Mycr
My = mgp x R,{e3 =mgpP(Ry es).

2.2 Optimization Problem

As in MPC problems, a convex optimization should be solved, a quadratic cost function for the

linearized system (11) is introduced as follows to minimize cost as well as energy [15, 16, 17]

1=

J=F Ry, TIN)+ ) L(Re, Ty, i)

=0
such that

F =trace(P,(Isx3 — Ry)) + trace(PI1y)

1 1 A
= §||P11/2(I3x3 —Ry)IIF + EHP;ZI/Z TIyl%,

L(Ry, 1ti, ug) = tr(Qp (I — Ry )) + %fmce(Qz(l - Fy))

+ trace(ukTW1 uy)
1

= S1Q1"( = Ryl +

1

521" (1= Fil

1
5w gl
Since 7y =logRy; besides, in the neighborhood of (II) it is true that oIy ~ I [17]:

1
trace(Qi(I - Ry) = 5 1Q1 (I - Ryl
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= trace(Qy (I — exp(jx)))

1 -
’:EUkTerlk

1

trace(Qa(l = Fi) = -5 11Q;" (1 - Fo) I

1
T 2h2
1

= SOTIE ]~ Qo] 0T,

Q32 h(J =L oIT, 112

where Q55 = trace(Qi22)I3x3 — Q1,22 for symmetric positive definite Q; , € R¥>?® | and Q, =

J71Q,,]7'. These matrices are evaluated from the property discussed in [15], which implies
1 ~

that for any positive semi-definite symmetric matrix B and ¢ € R3, %HBTCAH% = %CTBC, where

B =tr(B)I3x3 — B. As a result,

4

1 ~
L1, oIy, 1) = EﬂkTQl Nk
1 . 1
+ E(sr[kTQzaHk + ETkTwTk,
, 1 - 1 -
Fnn, oTy) = quﬂpl NN+ EénﬁpzanN,

where W = trace(W;)I — Wy, and u; € s0(3)" is expressed in terms of the applied torque 7 as
uy = T where s0(3)" is the dual of s0(3). We rewrite the linearized system and cost function as

follows

Cre1 = ACk + Bouy, (12)

IN =

where

3 LMI Based Model Predictive Control

No control action is applied to the system after the instant k+m—i; namely, u(k+ilk) = 0fori > m.
From the viewpoint of the receding horizon, only the first calculated control is implemented to
the system. In the next sampling time, the optimization problem min J is solved using the new
measurement of the system. As a result, both m and p go one step ahead. Considering system
(8), the minimization problem of the cost function is replaced by a worst-case minimization

problem in each sampling time, namely the following min — max problem
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min max  J(k) (14)
ulk+ilk) [A(K) B(k)]eQ

N
1 1
JN<k>=5<:};PcN+EZ (k+ilk)" QT (k + ilk)
+1(k +ilk)T Wr(k +i|k). (15)

Maximization is on the set Q) = Convex Hull[A B], arising from stability considerations, which
gives an upper bound for the Lyapunov function and leads to a robust performance objective.
Then, this bound should be minimized by the use of the state feedback control law u(k +ilk) =
K C(k+ilk)i = 0. The quadratic Lyapunov function is introduced in the form of

V(C(klk)) = C(klk)T PC(kk), P> 0. (16)

According to the Lyapunov stability theorem, variations of V(C(k|k)) should be negative in
order to guarantee the stability of the system. Suppose that for any C(k + i|k), u(k + ilk) and
i <0, the variation of Lyapunov function is smaller than a negative quadratic function, which
considers being the summand of cost function such as[12]

AV(C(k+1)) = V(C(k+i+1]k)) = V(C(k +ilk))
=C(k+i+1)k)T Py Clk+i+ 1)k) = C(k +ilk)T P (k +i]k)
—(C(k +ilk)T QrC(k +ilk) + T(k +i|k)T W (k + i|k)). (17)

Let us calculate the sum of both sides of (17). Firstly, the sum of the first side of it is calculated
as follows [18]

N-1
A[C (k+i+ 100 Py Clk+i + 1]k)]
=0

N-1
Z[c k+i+1k) TP Ck+i+1]k) - (k+z|k)TPkC(k+z|k)]

CT(k + NIK)Per C(k + N1k) = T (kIK)PC (klK).

Note: C(k+ N|k) is summerized as Cy. Finally, it gives

N-1
—C(klk)TP.C(klk) < —CLPCy — Z[c k+ilk)TQrC(k +ilk) +7(k +i]k) Wr(k+z|k)]
=0

as a result

~V(C(klk)) < =T (k)
I (k) < CT(klk)T L (KlK). (18)

So (18) is an upper bound for the cost function J; namely, the problem of maxJ gives the
upper bound V(C(klk)) for J. It is clear that the minimization problem has been changed to
determining the state feedback control gain K of t(k +ilk) = KC(k +ilk), i > 0 in each sampling
time k for the minimization of this upper bound of V(C(k|k)). It means we should minimize the
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upper bound of 7, which is the function V. Similar to the problem of standard MPC, firstly,
the first calculated input T(k|k) = KT (k|k) should be implemented to the system. In the next
sampling time, the state (i, is measured, and optimization is repeated to compute F again.
Since the linearized system has been embed on Euclidean space using the exponential map, it
is a convex optimization problem and can be solved under linear matrix inequality conditions.
The following theorem expresses LMI conditions on which the gain of controller K is going to

calculate

Theorem 1. Let (i = C(k|k) be the state of the system (12) measured at the sampling time k.
There are no constraints on inputs and outputs of the system. Then, the feedback matrix K
in control law ©(k +ilk) = KC(k + i|k), i < 0 which minimizes the upper bound V({(k|k)) on the
robust performance of cost function in sampling time k can be computed as follows[12]

K=LE™, (19)

where the matrices E > 0, L (if it exists) are obtained from the following linear minimization

problem:
%’i 4 (20)
subject.to. :
T

1 k™ )5 (1)

C(klk) E

E EAT +LTBT EQY? LTw//?

AE+BL E 0 0

QY2E 0 yI 0

1/2
WY2E 0 0 yI
>0 (22)
Proof: See Appendix. A in [12]. O

4 Simulation Results

In this section, a numerical simulation is presented in order to analyze the effectiveness of the
proposed method. Standard inertial matrix is chosen as J = diag(1,2.8,2). The discretization
time-step parameter h = 0.2. The initial angular velocity in the body-fixed frame is considered
as Qg =[0,0,1] while IT = J.Q, and 7 = [0,0,1.5]. Solving LMI, the control gain K is computed
in each iteration with control horizon 2, and only the first parameter of K is implemented to the
system. The simulation results are depicted on figures (1,2). Figures show that only 7 seconds
takes for the pendulum to reach its equilibrium. Simulation repeated for more complicated
initial conditions, which expressed complicated starting point of the pendulum, result with
initial conditions as Q =[0,1,1] and 5 = [-0.5,0,1.5] is illustrated on figure (3). Using the
LMI method for solving the MPC problem on the manifold is compared with the standard
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MPC method on a manifold without using the LMI. Results are depicted on figures (4,5),

which demonstrate fewer control efforts. This is a rest-to-rest initial condition simulation.

P | |
0 5 10 15 20 25 30
time(s)

Figure 1: Angular Momentum ITj3.

. . .
0 5 10 15 20 25 30
time(s)

Figure 2: Input torque 73.

°

S8

- | | | |
0 5 10 15 20 25
time(s)

Figure 3: Input torque 73.

48 Sl I L L I
2 4 6 8 10 12
time(s)

Figure 4: Comparing MPC based LMI on manifold method with regular MPC on manifold
method for the parameter I15.

5 Conclusions

This paper formulated a model predictive method for the 3D pendulum, in which its config-
uration space is expressed as a manifold. Its dynamics are used as LGVI equations, and a
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6
time(s)

Figure 5: Comparing MPC based LMI on manifold method with regular MPC on manifold

method for input torque parameter 3.

linearization method on manifolds has been used in order to generalize the conventional MPC

methods from Fuclidean spaces to manifolds. Solving MPC and calculating control gain is

achieved using LMI conditions.
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