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Editor in Chief’s Letter

It would be our great honor to have you as the readers of Journal of “Control and
Optimization in Applied Mathematics (COAM)”. The present journal is published and
supported by Payame Noor University (PNU) as a semi-annual journal. Our main
objective is to facilitate scientific regional and global discussions and collaborations
between specialists in different fields of applied mathematics, especially in the fields
of control and optimization. We hope that scholars and experts of different fields of
applied mathematics find our scientific journal a platform for international commu-
nications of insight and knowledge. To assure the respectful subscribers about high
quality of the journal, each article is reviewed by subject-qualified referees, the same
as any other well-known international journal of applied mathematics.We believe that
by publishing high quality and creative researches, we will observe more collaborations
with our journal. We kindly invite all applied mathematicians especially in the fields of
control and optimization, to join us by submitting their original works to the Journal
of “Control and Optimization in Applied Mathematics”. I want to thank the respectful
colleagues of COAM, as well as referees, reviewers, and editors for their kind dedication
and vision.
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1 Introduction

The notion of gap function for mathematical programming problems has been studied
in various publications. This concept was first defined by Hearn in [7] for the scalar
value convex optimization problems, and was then introduced for variational inequality
problem in [1].

For multi-objective optimization problems with smooth data, the gap function has
been presented in [4] as a set-valued function. Also, two kinds of set-valued gap func-
tions are introduced for smooth and non-smooth multiobjective optimizations in [14].
Since the initial calculations of set-valued functions are faced with special problems,
working with these gap functions is very difficult. Recently, Caristi et al. [4] intro-
duced some single-valued gap functions, with complex structures, for multi-objective
optimization problems.

All previously mentioned papers considered the (multiobjective) optimization prob-
lems with the finite number of constraints. Kanzi and Soleymani-Damaneh [10] stud-
ied the concept of gap function for optimization problems with the infinite number of
quasi-convex constraints, i.e., quasi-convex semi-infinite problems. Also, the concept
of gap function extended to linear semi-infinite multiobjective optimization in [11], and
quasi-variational inequality problems in [13].

The purpose of this article is to introduce several scalar-valued gap functions, with
simple structures, for semi-infinite multi-objective optimization problems with locally
Lipschitz functions. In fact, the purpose of the present paper is to give a generalization
of sources listed above. The paper mainly deals with constrained optimization problems
formulated as

(P )

{
minimize f(x) :=

(
f1(x), . . . , fp (x)

)
subject to gα (x) ≤ 0 with α ∈ A,

where fi : Rn → R ∪ {+∞} for i ∈ ∆ := {1, . . . , p} and gα : Rn → R for α ∈ A are
(not necessary differentiable) locally Lipschitz functions, and the index set A ̸= ∅ is
arbitrary.

It is worth mentioning that Mastroeni [12] presented a descent method for solving
the variational inequalities and optimization problems (under differentiability) based
on gap function algorithms. Also, some applications of gap functions in iteration al-
gorithms, proper efficiency, and scalarization of multiobjective optimization can be
studied in [4, Section 5].
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2 Notations and Preliminaries

In this section, we present definitions and auxiliary results that will be needed in the
rest of the paper.

Let Rm be the m−dimensional Euclidean space. Denote by 0m and Rm
+ the zero

vector (i.e., (
m times︷ ︸︸ ︷
0, . . . , 0)) and the nonnegative orthant of Rm, respectively. Also, the open

ball with center a ∈ Rm and radius ε > 0 is denoted by Bε (a). The order and weak
order in Rm can respectively be defined by :

(
a1, ..., am

)
≤
(
b1, ..., bm

)
⇐⇒

{
ai ≤ bi, ∀i = 1, . . . ,m,

al < bl, ∃l ∈ {1, . . . ,m} ,(
a1, ..., am

)
<
(
b1, ..., bm

)
⇐⇒ ai < bi, ∀i = 1, . . . ,m.

Let φ : Rn → R be a locally Lipschitz function. The Clarke directional derivative of
φ at x̂ ∈ Rn in the direction v ∈ Rn, and the Clarke subdifferential of φ at x̂ introduced
in [8] are respectively given by

φ0(x̂; v) := lim sup
y→x̂, t↓0

φ(y + tv)− φ(y)

t
,

∂cφ(x̂) :=
{
ξ ∈ Rn | ⟨ξ, v⟩ ≤ φ0(x̂; v) for all v ∈ Rn

}
.

The Clarke subdifferential is a natural generalization of the derivative since it is known
that when function φ is continuously differentiable at x̂, then ∂cφ(x̂) = {∇φ(x̂)}.

Theorem 1. (Lebourg mean-value [8]) Let x, y ∈ Rn, and suppose that φ is a locally
Lipschitz function from Rn to R. Then, there exists a point u in the open line segment
(x, y), such that

φ(y)− φ(x) ∈ ⟨∂cφ(u), y − x⟩ .

Definition 1. Let φ : Rn → R be a locally Lipschitz function. We say that φ is
c−quasiconvex (i.e., Clarke quasiconvex) at x̂ ∈ Rn if for any x ∈ Rn

φ(x) ≤ φ(x̂) =⇒
〈
ξ, x− x̂

〉
≤ 0 ∀ξ ∈ ∂cφ(x̂).

3 Main Results

As a starting point of this section, we introduce the available set of (P) and the set of
active indices a possible point x0 as follows:
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S := {x ∈ Rn | gα (x) ≤ 0, ∀α ∈ A},

A (x0) := {α ∈ A | gα (x0) = 0} .

A given point x0 ∈ S is said to be an efficient (resp. weakly efficient) solution
for (P) if there is no x ∈ S satisfies f(x) ≤ f(x0) (resp. f(x) < f(x0)). The set of
all efficient solutions and weakly efficient solutions of (P) are denoted by E and W ,
respectively.

For each x0 ∈ S, let:

∂̂cfi (x0) := ∂cfi (x0) \ {0n} , ∀i ∈ ∆,

∂̂cf (x0) := ∂̂cf1 (x0)× . . .× ∂̂cfp (x0) ⊆ (Rn)p,

∂♯cf (x0) := ∂cf (x0) \ {0np} =
(
∂cf1 (x0)× . . .× ∂cfp (x0)

)
\ {0np}.

It is easy to see that

∂̂cf (x0) =
{
(ξ1, . . . , ξp) ∈ ∂cf (x0) | ξi ̸= 0n for all i ∈ ∆

}
,

∂♯cf (x0) =
{
(ξ1, . . . , ξp) ∈ ∂cf (x0) | ξi ̸= 0n for some i ∈ ∆

}
,

∂̂cf (x0) ⊆ ∂♯cf (x0) ⊆ ∂cf (x0) .

First, we introduce a quasi-gap function for (P).

Definition 2. For each (x, y, z) ∈ S × S × Rn and ξ := (ξ1, . . . , ξp) ∈ ∂cf(z), the
quasi-gap function φy (x, z, ξ) is defined as:

φy (x, z, ξ) :=

p∑
i=1

〈
ξi, x− y

〉
.

Theorem 2. let fi be c−quasiconvex function at x0 ∈ S for i ∈ ∆.

(I) If for each y ∈ S there exists some ξ(y) ∈ ∂̂cf (x0) with φy(x0, x0, ξ
(y)) ≤ 0, then

x0 ∈ E.

(II) If for each y ∈ S there exists some ξ(y) ∈ ∂♯cf (x0) with φy(x0, x0, ξ
(y)) ≤ 0, then

x0 ∈W .

Proof. (I) Suppose that x0 /∈ E. Then, we can find some x∗ ∈ S and k ∈ ∆, satisfying

fi(x
∗)− fi(x0) ≤ 0, ∀i ∈ ∆, and fk (x

∗)− fk (x0) < 0. (1)

The above inequalities and the c−quasiconvexy of fi functions at x0 imply that〈
ξi, x

∗ − x0
〉
≤ 0, ∀i ∈ ∆, ∀ξi ∈ ∂cfi(x0). (2)
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At the other hand, the assumptions of theorem yield that there exists an ξ(x∗) ∈
∂̂cf (x0) such that

φx∗(x0, x0, ξ
(x∗)) ≤ 0. (3)

It is sufficient to prove that 〈
ξ
(x∗)
k , x∗ − x0

〉
< 0, (4)

since (2) and (4) imply φx∗(x0, x0, ξ
(x∗)) =

∑p
i=1

〈
ξ
(x∗)
i , x0 − x∗

〉
> 0, which

contradicts (3).

If (4) does not hold, in view of (2) we obtain
〈
ξ
(x∗)
k , x∗ − x0

〉
= 0. By latter and

ξ
(x∗)
k ̸= 0n we can find some sequence {wt} → x∗−x0 such that

〈
ξ
(x∗)
k , wt

〉
> 0 for

all t ∈ N. Since wt = (wt + x0)− x0, the latter inequality and c−quasiconvexity
of fk lead us to〈

ξ
(x∗)
k , (wt + x0)− x0

〉
> 0 =⇒ fk(wt + x0)− fk(x0) > 0, ∀t ∈ N.

Hence, the continuity of fk concludes that:

lim
t→∞

(
fk(wt + x0)− fk(x0)

)
≥ 0 =⇒ fk(x

∗)− fk(x0) ≥ 0,

which contradicts (1). Thus (4) holds.

(II) If x0 /∈W , then there exists an x∗ ∈ S such that fi(x∗)−fi(x0) < 0, for all i ∈ ∆.
By definition of ∂♯cf (x), there exists a k ∈ ∆, such that ξ(x

∗)
k ̸= 0n. Similar to

the proof of (I), it can be seen that
〈
ξ
(x∗)
k , x∗ − x0

〉
< 0. The remainder of proof

is similar to (I) and is hence omitted.

The following example shows that the converse of the above theorem does not valid.

Example 1. : Consider the following problem:
min

(
|x1|+ x1 , |x2|+ x2

)
subject to x1 + x2 ≤ 0.

In fact, f1 (x1, x2) = |x1|+ x1, f2 (x1, x2) = |x2|+ x2, and g (x1, x2) = x1 + x2. Consid-
ering x0 = (0, 0), we have x0 ∈ E, and

∂cf1 (x0) = [0, 2]× {0} ,

∂cf2 (x0) = {0} × [0, 2] .



Quasi-Gap and Gap Functions for .../ COAM, 3(2), Autumn-Winter 20186

Taking ŷ = (ŷ1, ŷ2) = (−1,−1) ∈ S, for each ξ
(ŷ)
1 ∈ ∂̂cf1 (x0) and ξ

(ŷ)
2 ∈ ∂̂cf2 (x0), we

have ξ(ŷ)1 = (a1, 0) and ξ(ŷ)2 = (0, a2) for some a1, a2 ∈ (0, 2]. Thus,

φŷ(x0, x0, ξ
(ŷ)) =

〈
(a1, 0) , (−ŷ1,−ŷ2)

〉
+
〈
(0, a2) , (−ŷ1,−ŷ2)

〉
= a1 + a2 > 0.

Theorem 3. If x0 ∈ E, then for each y ∈ S and m ∈ N, there exists z(m) ∈ B1/m (x0)

and ξ(m) := (ξ
(m)
1 , . . . , ξ

(m)
p ) ∈ ∂cf(z

(m)), such that〈
ξ
(m)
i , y − x0

〉
≥ 0, ∀i ∈ ∆, (5)

or 〈
ξ
(m)
k , y − x0

〉
> 0, ∃k ∈ ∆.

Proof. Since the proof is the same as [4, Theorem 4.2], it is omitted, An only different
point of these proves is that in [4, Theorem 4.2] the feasible set is convex, and here it
is not necessarily convex.

Remark 1. The result of Theorem 3 can be written as

x0 ∈ E =⇒ ∀y ∈ S, ∀m ∈ N, ∃z(m) ∈ B1/m (x0) , ∃(ξ(m)
1 , . . . , ξ(m)

p ) ∈ ∂cf(z
(m)),(〈

ξ
(m)
1 , y − x0

〉
,
〈
ξ
(m)
2 , y − x0

〉
, . . . ,

〈
ξ(m)
p , y − x0

〉)
≰ 0p.

The similar proof of Theorem 3 shows that:

x0 ∈W =⇒ ∀y ∈ S, ∀m ∈ N, ∃z(m) ∈ B1/m (x0) , ∃(ξ(m)
1 , . . . , ξ(m)

p ) ∈ ∂cf(z
(m)),(〈

ξ
(m)
1 , y − x0

〉
,
〈
ξ
(m)
2 , y − x0

〉
, . . . ,

〈
ξ(m)
p , y − x0

〉)
≮ 0p.

Definition 3. Suppose that x0 is an efficient solution to (P ). The point y ∈ S is said
to be compatible with x0 if the number of natural numbers m, which is satisfied in (5)
is infinite. The set of all compatible points with x0 is denoted by S(x0).

The following corollary of Theorem 3, is stated as the approximation converse of
Theorem 2.

Theorem 4. Suppose that x0 ∈ E and y ∈ S(x0). Then there exists a sequence{
z(m)

}∞
m=1

converging to x0, and
{
ξ(m)

}∞
m=1

with ξ(m) ∈ ∂cf
(
z(m)

)
, such that:

φy

(
x0, z

(m), ξ(m)
)
≤ 0, ∀m ∈ N.

Now, we introduce a new gap function for the problem (P).
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Definition 4. For each (x, z) ∈ S×Rn and ξ := (ξ1, . . . , ξp) ∈ ∂cf(z), the gap function
φ (x, z, ξ) is defined as:

φ (x, z, ξ) := sup
y∈S

{ p∑
i=1

〈
ξi, x− y

〉}
.

It is easy to see that
φ (x, z, ξ) = sup

y∈S
φy (x, z, ξ) .

Notice that the above gap function is more suitable than the gap function, which is
defined in [4], because of z = x in that gap function, so our gap function is its extension.
Moreover, the gap function presented in [4] is more complicated in calculus, since its
style is infimum of superior.

Lemma 1. For each x ∈ S, z ∈ Rn, and ξ ∈ ∂cf (z) , we have:

φ (x, z, ξ) ≥ 0.

Proof. By taking y = x in definition of φ (x, z, ξ), the result is clear.

Now, we can state the following famous theorem.

Theorem 5. Suppose that fi is a c−quasiconvex function at x0 ∈ S for each i ∈
{1, . . . , p} .

(I) If φ(x0, x0, ξ̂) = 0 for some ξ̂ ∈ ∂̂cf (x0) , then x0 ∈ E.

(II) If φ(x0, x0, ξ♯) = 0 for some ξ♯ ∈ ∂♯cf (x0) , then x0 ∈W .

Proof. (I) φ(x0, x0, ξ̂) = 0 implies that for each y ∈ S we have φy(x0, x0, ξ̂) ≤ 0. The-
orem 2 justifies the result.

(II) Applying the proof of part (I), the result holds.

Remark 2. In the best of our knowledge, the inverse of Theorem 5 is not valid, even
by convexity and differentiability of involving functions. However, in [4] shows that the
inverse of Theorem 5 holds for set-valued gap function at a proper, efficient solution
under some suitable assumptions. However, the characterization of situations for the
satisfactory of the inverse of Theorem 5 is an important open problem.

Now, we introduce another gap function for the problem (P), in which satisfies in
the converse of Theorem 5.
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Definition 5. For each x ∈ S, ξ := (ξ1, . . . , ξp) ∈ ∂cf (x), and λ := (λ1, . . . , λp) ∈ Rp
+

with
∑p

i=1 λi = 1, we define:

φ∗ (x, ξ, λ) := sup
y∈S

p∑
i=1

λi
〈
ξi, x− y

〉
.

It is trivial that by using the proof of Theorem 5, if fi for each i = 1, . . . , p is
c−quasiconvex at x0 ∈ S, and if φ∗(x0, ξ̂, λ) = 0 for some ξ̂ ∈ ∂̂cf(x0) and λ > 0p, then
x0 ∈ E. The proof of the converse of this result needs the following definition.

Definition 6. x̂ ∈ S is said a Karush-Kuhn-Tucker point for problem (P ) if there exist
λ := (λ1, . . . , λp) ≥ 0p with

∑p
i=1 λi = 1, and µα ≥ 0 for α ∈ A(x̂), a finite number of

them are nonzero, such that:

0 ∈
p∑

i=1

λi∂cfi (x̂) +
∑

α∈A(x̂)

µα∂cgα (x̂) .

x̂ ∈ S is said to be strong Karush-Kuhn-Tucker point for problem (P ) if the above
inclusion holds for some λ := (λ1, . . . , λp) > 0p. The set of all Karush-Kuhn-Tucker
points (resp. strong Karush-Kuhn-Tucker points) of (P ) is denoted by K (resp. SK).

Many authors have studied necessary conditions for optimality of multiobjective
semi-infinite programming; see, for example, [2, 5, 8, 9]. We can formulate these nec-
essary conditions as follows:

x0 ∈W =⇒ x0 ∈ K,

x0 ∈ E =⇒ x0 ∈ SK.

The above mentioned necessary optimality conditions hold under some assumptions
(same as closedness of cone

(⋃
α∈A(x0)

∂cgα(x0)
)

and\or compactness of index set A)
and suitable constraint qualifications (same as Abadie, or Mangasarian-Fromovitz).
These special conditions differ from paper to paper, and none of them play a role in
proving converse of the Theorem 5, so, naturally, we use x0 ∈ K and x0 ∈ SK in place
of x0 ∈ E and x0 ∈W .

Theorem 6. Let x0 ∈ K. If gα functions are c-quasiconvex at x0 for α ∈ A (x0), then
there exist ξ ∈ ∂cf (x0) and λ ∈ Rn

+ such that φ∗ (x0, ξ, λ) = 0.

Proof. By definition of K, there exist some λ := (λ1, . . . , λp) ∈ Rp
+ with

∑p
i=1 λi = 1,

and nonnegative µα1 , . . . , µαq with {α1, . . . , αq} ⊆ A (x0) ,and ξi ∈ ∂cfi (x0) for i =
1, . . . , p, and ζαm ∈ ∂cgαm (x0) for m = 1, . . . , q, such that:

p∑
i=1

λiξi +

q∑
m=1

µαmζαm = 0. (6)
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Let y ∈ S. Then,

gαm (y) ≤ 0 = gαm (x0) , ∀m = 1, . . . , q.

Thus, according to c-quasiconvexity of gαm functions〈
ζαm , y − x0

〉
≤ 0, ∀m = 1, . . . , q.

The last inequality and (6) imply that:
p∑

i=1

λi
〈
ξi, y − x0

〉
= −

q∑
m=1

µαm

〈
ζαm , y − x0

〉
≥ 0.

Therefore,
p∑

i=1

λi
〈
ξi, x0 − y

〉
≤ 0.

From this and
∑p

i=1

〈
ξi, x0 − x0

〉
= 0, the result is proved.

As mentioned in Remark 2, the converse of Theorem 5 is not valid in general. The
following example shows this invalidity.

Example 2. Considering the problem that is considered in Example 1. we saw that
x0 = (0, 0) ∈ E and

φy(x, z, ξ̂) = −a1y1 − a2y2,

for each y = (y1, y2) ∈ S and ξ̂1 = (a1, 0) and ξ̂2 = (0, a2) with a1, a2 ∈ (0, 2]. Hence,

φ
(
x0, x0, (ξ̂1, ξ̂2)

)
= sup

{
− a1y1 − a2y2 | y1 + y2 ≤ 0

}
.

Since a1, a2 > 0, taking y1 < 0 and y2 < 0, implies that:

φ
(
x0, x0, (ξ̂1, ξ̂2)

)
> 0.

In a similar way it can be shown that for each (ξ♯1, ξ
♯
2) ∈ ∂♯cf(x0) we have

φ
(
x0, x0, (ξ

♯
1, ξ

♯
2)
)
> 0.

The following example summarizes our results.

Example 3. Consider the following problem:
min




x
1
2 if x ∈ (0, 1)

x
3
2 if x ∈ [1,+∞)

0 if x ∈ (−∞, 0]

,

{
x− 1 if x ∈ [2,+∞),

3− x if x ∈ (−∞, 2)


subject to |x− 1

2 | −
1
2 ≤ 0.
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In fact, f1(x) =


x

1
2 if x ∈ (0, 1)

x
3
2 if x ∈ [1,+∞)

0 if x ∈ (−∞, 0]

, f2(x) =

{
x− 1 if x ∈ [2,+∞),

3− x if x ∈ (−∞, 2)
, and

g1(x) = |x − 1
2 | −

1
2 . It is easy to check that ∂cf1 (1) =

[
1
2 ,

3
2

]
, ∂cf2 (1) = {−1},

∂cg1 (1) = {0}, and A(1) = {1}. Thus, taking ξ̂ := (1,−1) ∈ ∂̂cf (1), we conclude that
φ(1, 1, ξ̂) = 0, and so 1 ∈ E by Theorem 5.
On the other hand, since

0 ∈ ∂cf1 (1) + ∂cf2 (1) + ∂cg1 (1) ,

then 1 ∈ SK ⊆ K by setting λ1 = λ2 = µ1 = 1. This fact and Theorem 6 deduce that
φ∗(1, ξ̂, λ̂) = 0 for λ̂ := (1, 1).

4 Conclusion

In conclusion, for each x, y ∈ S, z ∈ Rn, ξi ∈ ∂cfi(z), and λi ≥ 0 with
∑p

i=1 λi = 1, let

φ̂y(x, z, ξ, λ) :=

p∑
i=1

λi
〈
ξi, y − x

〉
,

φ̂(x, z, ξ, λ) := sup
y∈S

φ̂y(x, z, ξ, λ).

φ̂, as a generalization of φ and φ∗, is a new general form of gap function for (P). In
similar way to Theorems 3, 5, and 6 (apart from some small differences), the following
theorems can be proved:

Theorem 7. Suppose that the fi (for i = 1, . . . , p) and gα (for α ∈ A(x0)) are
c−quasiconvex functions at x0. Then, the following assertions hold:

(I) ∃ξ̂ ∈ ∂̂cf(x0), ∃λ > 0p, φ̂(x0, x0, ξ̂, λ) = 0 =⇒ x0 ∈ E.

(II) x0 ∈ E
suitable conditions

=⇒ x0 ∈ SK =⇒ ∃ξ ∈ ∂cf(x0), ∃λ > 0p, φ̂(x0, x0, ξ, λ) = 0.

Theorem 8. Suppose that the fi (for i = 1, . . . , p) and gα (for α ∈ A(x0)) are
c−quasiconvex functions at x0. Then, the following assertions hold:

(I) ∃ξ♯ ∈ ∂♯cf(x0), ∃λ > 0p, φ̂(x0, x0, ξ
♯, λ) = 0 =⇒ x0 ∈W .

(II) x0 ∈W
suitable conditions

=⇒ x0 ∈ K =⇒ ∃ξ ∈ ∂cf(x0), ∃λ ≥ 0p, φ̂(x0, x0, ξ, λ) = 0.

Theorem 9. Suppose that each fi (for i = 1, . . . , p) is a c−quasiconvex function at x0.
Then, the following assertions hold:
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(I) ∀y ∈ S, ∃ξ(y) ∈ ∂cf(x0), ∃λ > 0p, φ̂y(x0, x0, ξ(y), λ) ≤ 0 =⇒ x0 ∈ E.

(II) x0 ∈ E =⇒ ∀y ∈ S(x0), ∃{z(m)} → x0, ∃ξ(m) ∈ ∂cf(z
(m)), ∀λ ≥ 0p, φ̂y(x0, z

(m), ξ(m), λ) ≤
0 ∀m ∈ N.

Remark 3. It is easy to show that the condition ∃λ > 0p in Theorem 8(I) can be
replaced by the weaker condition ∃λ ≥ 0p, if

ξ♯k ̸= 0n =⇒ λk ̸= 0.
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1 Introduction

In this paper, we consider the following multiobjective semi-infinite programming prob-
lem (MSIP):

(P) inf
(
f1(x), f2(x), . . . , fp(x)

)
s.t. gt(x) ≤ 0 t ∈ T, x ∈ Rn,

where fi, i ∈ I := {1, 2, . . . , p} and gt, t ∈ T are locally Lipschitz functions from Rn

to R, and the index set T ̸= ∅ is arbitrary, not necessarily finite. When T is finite, (P )
is a multiobjective optimization problem, and when p = 1 and T is infinite, (P ) is a
semi-infinite optimization problem.

Necessary and sufficient optimality conditions for efficient, weakly efficient, and
isolated efficient solutions of MSIP have been studied by many authors; see for instance
[13, 18] in linear case, [12, 14] in convex case, [5] in smooth case, and [7, 11, 19, 20, 21, 23]
in locally Lipshitz case. In almost all of the mentioned articles, the Karush-Kuhn-
Tucker (KKT) type necessary conditions are justified for MSIPs under some constraint
qualifications, and sufficient conditions are proved under several kinds of generalized
convexity and generalized invexity. We know that the most general generalization of
concept of invexity is (Φ, ρ)−invexity, has been introduced by Caristi et al. in [5, 6] for
smooth functions. Antczak and his coauthor presented the concept of (Φ, ρ)−invexity
for nonsmooth functions [1, 2], and Kanzi [19] extended this definition to a wider range
of nonsmooth functions. In the present paper, we will use this most general form of
(Φ, ρ)−invexity.

On the other hand, the gap function for mathematical programming problems has
been studied in various publications in recent years. Hearn [17] introduced a gap
function for scalar convex optimization problems. Chen et al. [9] investigated a gap
function for differentiable multiobjective optimization problems. The weak point of the
gap function introduced in [9] is set-valued, i.e., brings a set to any point. Recently,
Caristi et al. [4] can present some scalar-valued gap functions to nonsmooth multiob-
jective problems. Given the complexity of set-valued maps, these new single-valued gap
functions are very useful. The defect gap functions introduced in [4] is that they work
only for problems with convex\quasiconvex data. In the present article, this weakness
will be resolved. For this end, we will define a gap function for nonsmooth MSIP, using
(Φ, ρ)−invexity. Of course, it should be mentioned that, in this study, if we replace
“(Φ, ρ)−invex” by “invex”, the results will still be original which are the extensions of
the existing theorems in mentioned articles.

We organize the paper as follows. In the next section, we provide the preliminary
results to be used in the rest of the paper. In Section 3, we first overview some necessary
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optimality conditions for weakly efficient and efficient solutions, that are presented in
literatures. Then, we state a similar result for properly efficien solutions. In Section 4,
we introduce a new gap function involving (Φ, ρ)−invexity, and present some charac-
terizations for efficient, weakly efficient and properly efficient solutions of MSIP respect
to considered gap function, unlike of other papers that consider separate gap functions
for each kind of efficiency.

2 Preliminaries

In this section, we briefly overview some notions of nonsmooth analysis widely used in
formulations and proofs of main results of the paper. For more details, discussion, and
applications see [8].

As usual, ⟨x, y⟩ stands for the standard inner product x, y ∈ Rn. Given x, y ∈ Rn,
we write x ≤ y (resp. x < y) when x ̸= y and xi ≤ yi (resp. xi < yi) for all i ∈ {1, . . . , n}.
The zero vector of Rn is denoted by 0n.

Given a nonempty set A ⊆ Rn, we denote by A0 and A−, the polar and strictly
polar cones of A, defined respectively by

A0 := {x ∈ Rn | ⟨x, a⟩ ≤ 0, ∀a ∈ A},

A− := {x ∈ Rn | ⟨x, a⟩ < 0, ∀a ∈ A}.

Also, we denote the cotingent tangent cone of A at x̂ ∈ A by T (A, x̂), i.e.,

T (A, x̂) :=
{
v ∈ Rn | ∃tr ↓ 0, ∃vr → v such that x̂+ trvr ∈ A ∀r ∈ N

}
.

Let x̂ ∈ Rn and let φ : Rn → R be a locally Lipschitz function. The Clarke directional
derivative of φ at x̂ in the direction v ∈ Rn, and the Clarke subdifferential of φ at x̂
are respectively given by

φ0(x̂; v) := lim sup
y→x̂, t↓0

φ(y + tv)− φ(y)

t

and
∂cφ(x̂) :=

{
ξ ∈ Rn | ⟨ξ, v⟩ ≤ φ0(x̂; v) for all v ∈ Rn

}
.

The Clarke subdifferential is a natural generalization of the classical derivative since it
is known that when function φ is continuously differentiable at x̂, ∂cφ(x̂) = {∇φ(x̂)}.
Moreover when a function φ is convex, the Clarke subdifferential coincides with ∂φ(x̂),
the subdifferential in the sense of convex analysis, i.e.
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∂φ(x̂) :=
{
ξ ∈ Rn | φ(x) ≥ φ(x̂) +

〈
ξ, x− x̂

〉
∀ x ∈ Rn

}
.

It is worth to observe that ∂cφ(x̂) is a nonempty, convex, and compact subset of Rn.

Theorem 1. Let ϑ1 and ϑ2 be locally Lipschitz functions from Rn to R and x̂ ∈ Rn.
Then,

∂c(αϑ1 + βϑ2)(x̂) ⊆ α∂cϑ1(x̂) + β∂cϑ2(x̂), ∀α, β ∈ R.

3 KKT Type Necessary Conditions

At starting point of this section, we observe that the feasible set of (P ) is denoted by
M , i.e.,

M := {x ∈ Rn | gt(x) ≤ 0, ∀t ∈ T}.

For each x̂ ∈M , set

Fx̂ :=
⋃
i∈I

∂cfi(x̂), and Gx̂ :=
⋃

t∈T (x̂)

∂cgt(x̂),

where, T (x̂) denotes the set of active constraints at x̂,

T (x̂) := {t ∈ T | gt(x̂) = 0}.

There exist different kind of optimality, named efficiency, in multiobjective optimiza-
tion. A feasible point x̂ is said to be efficient solution [resp. weakly efficient solution]
for (P ) if and only if there is no x ∈ M satisfying f(x) ≤ f(x̂) [resp. f(x) < f(x̂)].
As well as in the classical case, the KKT type optimality conditions hold at efficient
and weakly efficient solutions of (P), provided some constraint qualifications (CQ) are
satisfied. For example, Kanzi [20] emphasized on weakly efficiency, and introduced the
CCQ as,

Definition 1. Let x̂ ∈ S. We say that (P) satisfies the Cottle constraint qualification
(CCQ, in brief) at x̂, if J is a compact subset of Rp, and the function (x, t) → gt(x) is
upper semicontinuous on Rn × T , and ∂cgt(x) is an upper semicontinuous mapping in
t for each x, and (Gx̂)

− ̸= ∅.

Then, following KKT type theorem is proved in [20, Theorem 3.6].

Theorem 2. (KKT Necessary Condition) Let x̂ ∈M be a weakly efficient solution of
(P) and CCQ holds at x̂. Then there exist αi ≥ 0 (for i ∈ I) with

∑m
i=1 αi = 1, and

βt ≥ 0 (for t ∈ T (x̂)) with βt ̸= 0 for at most finitely many indices, such that

0 ∈
p∑

i=1

αi∂cfi(x̂) +
∑

t∈T (x̂)

βt∂cgt(x̂).
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Caristi and Kanzi [7] considered the efficient solutions of (P), considered a Meda
type CQ as,

(MCQ): (Fx̂)
0 ∩ (Gx̂)

0 ⊆
p⋂

i=1

T (Qi, x̂),

where, Qi(x̂) :=
{
x ∈M | fl(x) ≤ fl(x̂) ∀l ∈ I \ {i}

}
, and in [7, Theorem 3.3] proved

the strong KKT type result as follows.

Theorem 3. (Strong KKT Necessary Condition). Let x̂ be an efficient solution of (P).
If in addition, (MCQ) and the condition

(Fx̂)
0 \ {0n} ⊆

p⋃
i=i

(
∂cfi(x̂)

)−
, (1)

hold at x̂, then there exist scalars αi > 0, i ∈ I, and an integer k ≥ 0, and a set
{t1, t2, . . . , tk} ⊆ T (x̂), and scalars βtr ≥ 0 for r ∈ {1, 2, . . . , k}, such that

0 ∈
p∑

i=1

αi∂cfi(x̂) +

k∑
r=1

βtr∂cgtr(x̂).

Also, Kanzi in [19, Theorem 3] (resp. [19, Theorem 4]) presented the KKT (resp.
strong KKT) condition under Zangwill (resp. strong Zangmill) CQ, that introduced
there.

Everywhere in the above, we consider the efficiency and weakly efficiency for (P).
Proper efficiency is a very important notion used in studying multiobjective optimiza-
tion problems. There are many definitions of proper efficiency in literature, as those
introduced by Geoffrion, Benson, Borwein, and Henig; see [16] for a comparison among
the main definitions of this notion. We recall the following definition from [15, pp.
110].

Definition 2. A point x̂ ∈M is called a properly efficient solution of (P ) when there
exists a λ > 0p such that

⟨λ, f(x̂)⟩ ≤ ⟨λ, f(x)⟩, ∀x ∈M.

As proved in [10, Section 3], the above definition of proper efficiency is weaker than
its other definitions (under some assumed conditions). The following theorem gives us
a strong KKT condition for properly efficient solutions of (P).

Theorem 4. (Strong KKT Necessary Condition) Let x̂ be a properly efficient solution
of (P ), and CCQ holds at x̂. Then, there exist αi > 0 (for i ∈ I) with

∑p
i=1 αi = 1,

and βt ≥ 0, (for t ∈ T (x̂)), with βt ̸= 0 for finitely many indexes, such that

0 ∈
p∑

i=1

αi∂cfi(x̂) +
∑

t∈T (x̂)

βt∂cgt(x̂).
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Proof. By the definition of proper efficiency, there exist some scalars λi > 0 (for i ∈ I)
such that

p∑
i=1

λifi(x̂) ≤
p∑

i=1

λifi(x), ∀x ∈M.

This means that x̂ is a minimizer of the following scalar semi-infinite problem:

min
x∈M

p∑
i=1

λifi(x).

Applying Theorem 2, we get

0n ∈ τ∂c

( p∑
i=1

λifi(·)
)
(x̂) +

∑
t∈T (x̂)

µt∂cgt(x̂), (2)

for some τ > 0 and µt ≥ 0, (t ∈ T (x̂)), with µt ̸= 0 for finitely many indexes. Since
Theorem 1 guaranties that

∂c

( p∑
i=1

λifi(·)
)
(x̂) ⊆

p∑
i=1

λi∂cfi(x̂),

(2) concludes that

0n ∈ τ

p∑
i=1

λi∂cfi(x̂) +
∑

t∈T (x̂)

µt∂cgt(x̂).

Dividing both sides of above inclusion to τ
∑p

i=1 λi, we conclude that

0n ∈
p∑

i=1

λi∑p
i=1 λi

∂cfi(x̂) +
∑

t∈T (x̂)

µt
τ
∑p

i=1 λi
∂cgt(x̂). (3)

For each i ∈ I and t ∈ T (x̂) take

αi :=
λi∑p
i=1 λi

, and βt :=
µt

τ
∑p

i=1 λi
.

Since
∑p

i=1 αi = 1, (3) completes the proof.

We illustrate the application of Theorem 4 by an example.

Example 1. Consider the following problem:

inf
(
x1, x2

)
s.t. (cos t)x1 + (sin t)x2 ≤ 0, t ∈

[
π,

3π

4

]
.

It is easy to check that
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M = {(x1, x2) ∈ R2 | x21 + x22 ≤ 1}+ {(x1, x2) ∈ R2 | x1 ≥ 0, x2 ≥ 0}.

We consider the feasible point x̂ = (cosα, sinα) for some α ∈
(
π, 3π4

)
.

Since f1(x1, x2) = x1, f2(x1, x2) = x2, gt(x1, x2) = (cos t)x1+(sin t)x2, and T =
[
π, 3π4

]
,

we get

T (x̂) = {α}, Gx̂ = {(cosα, sinα)}, Fx̂ = {(1, 0), (0, 1)}.

Therefore, according to Theorem 4, we conclude x̂ is a properly efficient solution for
the problem.

4 Characterization via gap function

This section is started by a definition from [19].

Definition 3. Suppose that the functions Φ : Rn×Rn×Rn×R → R and ρ : Rn×Rn →
R, and the nonempty set X ⊆ Rn are given. A locally Lipschitz function ℏ : Rn → R
is said to be (Φ, ρ)−invex at x∗ ∈ X with respect to X, if for each x ∈ X one has:

Φ
(
x, x∗, 0n, r

)
≥ 0 for all r ≥ 0, (4)

Φ(x, x∗, ., .) is convex on Rn × R, (5)
Φ
(
x, x∗, ξ, ρ(x, x∗)

)
≤ ℏ(x)− ℏ(x∗), ∀ξ ∈ ∂cℏ(x∗). (6)

Notice that this definition is more general that [1, Definition 4] and [2, Definition
6], since there considered ρ are real number and here is a function. Everywhere in the
following, we will assume X equals to feasible solution of (P ), i.e., X =M , but for the
sake of simplicity we will omit to mention X.

Since 1982, an important function respect to convex optimization problems was
defined by Hearn [17]. As mentioned in introduction, all existing literatures the gap
function was defined for optimization programming with convex or quasiconvex data.
Now, we define the gap function for nonsmooth MSIPs with (Φ, ρ)-invex functions.

Definition 4. Suppose that the fi functions are (Φ, ρi)-invex at x ∈M . For each

ξ := (ξ1, . . . , ξp) ∈
p∏

i=1

∂cfi(x) and λ := (λ1, . . . , λp) ≥ 0p with
p∑

i=1

λi = 1,

the gap function of problem (P ) is defined as

Υ(x, ξ, λ) := inf
y∈M

{
p∑

i=1

λiΦ(y, x, ξi, ρi(y, x))

}
.
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It is worth mentioning that all the gap functions considered in [7, 9, 12, 17] are
special cases of above gap function. At the rest of this section, we will characterize
efficient, weakly efficient, and properly efficient solutions of (P) utilizing Υ(x, ξ, λ).

Theorem 5. Let the fi function be (Φ, ρi)-invex at x̂ ∈M for each i ∈ I.

(a) If Υ(x̂, ξ̂, λ̂) = 0 for some ξ̂ := (ξ̂1, . . . , ξ̂p) ∈
∏p

i=1 ∂cfi(x̂) and λ̂ := (λ̂1, . . . , λ̂p) ≥
0p with

∑p
i=1 λ̂i = 1, then x̂ is a weak efficient solution for (P ).

(b) If Υ(x̂, ξ̂, λ̂) = 0 for some ξ̂ := (ξ̂1, . . . , ξ̂p) ∈
∏p

i=1 ∂cfi(x̂) and λ̂ := (λ̂1, . . . , λ̂p) >

0p with
∑p

i=1 λ̂i = 1, then x̂ is an efficient solution for (P ).

Proof. (a) By contradiction assume that Υ(x̂, ξ̂, λ̂) = 0 while x̂ is not a weak efficient
solution for (P ). Then, we can find a feasible point x0 ∈ M such that fi(x0) < fi(x̂)

for all i ∈ I. Thus, the (Φ, ρi)-invexity of fi functions implies that

Φ
(
x0, x̂, ξ̂i, ρi(x0, x̂)

)
≤ fi(x0)− fi(x̂) < 0, ∀i ∈ I. (7)

On the other hand, since λ̂ ≥ 0p, then there exists an index k ∈ I such that

λ̂k > 0, and λ̂i ≥ 0 ∀i ∈ I \ {k}. (8)

Clearly, (7) and (8) imply

λ̂kΦ
(
x0, x̂, ξ̂k, ρk(x0, x̂)

)
< 0, and λ̂iΦ

(
x0, x̂, ξ̂i, ρi(x0, x̂)

)
≤ 0 ∀i ∈ I \ {k}.

Hence,
p∑

i=1

λ̂iΦ
(
x0, x̂, ξ̂i, ρi(x0, x̂)

)
< 0,

which consequences that Υ(x̂, ξ̂, λ̂) < 0. This contradiction completes the proof. (b) If
Υ(x̂, ξ̂, λ̂) = 0 while x̂ is not an efficient solution for (P ), there exist some x0 ∈M and
some index k ∈ I such that

fi(x0) ≤ fi(x̂), ∀i ∈ I, and fk(x0) < fk(x̂).

According to the above inequalities, the (Φ, ρi)-invexity of fi functions, and the as-
sumption of λ̂ > 0p, we get

p∑
i=1

λ̂iΦ
(
x0, x̂, ξ̂i, ρi(x0, x̂)

)
≤

p∑
i=1

λ̂i (fi(x0)− fi(x̂)) < 0.

So, Υ(x̂, ξ̂, λ̂) < 0, which contradicts the assumption.
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Since properly efficientcy is stronger than weakly efficiency and efficiency, the fol-
lowing sufficient condition needs some assumptions which are stronger than Theorem
4, containing equality of ρi functions for each i ∈ I.

Theorem 6. Suppose that for each i ∈ I, the fi function is (Φ, ρ)-invex at x̂ ∈ M .
If there exists a ξ̂ := (ξ̂1, . . . , ξ̂p) ∈

∏p
i=1 ∂cfi(x̂) such that Υ(x̂, ξ̂, λ) = 0 for all λ :=

(λ1, . . . , λp) > 0p with
∑p

i=1 λi = 1, then x̂ is a proper efficient solution for (P ).

Proof. If x̂ is not a proper efficient solution for (P ), we can find some x0 ∈ M and
λ∗ := (λ∗1, . . . , λ

∗
p) > 0p such that

p∑
i=1

λ∗i fi(x0) <

p∑
i=1

λ∗i fi(x̂).

Taking λ̃i := λ∗
i∑p

i=1 λ
∗
i
, we conclude that

∑p
i=1 λ̃i = 1, and

p∑
i=1

λ̃ifi(x0) <

p∑
i=1

λ̃ifi(x̂). (9)

We claim that
∑p

i=1 λ̃ifi is a (Φ, ρ)−invex function at x̂. Suppose that ζ ∈
∑p

i=1 λ̃i∂cfi(x̂)

is given. It is enough to show that

Φ
(
x, x̂, ζ, ρ(x, x̂)

)
≤

p∑
i=1

λ̃ifi(x)−
p∑

i=1

λ̃ifi(x̂), ∀x ∈M. (10)

For this end, we recall from Theorem 1 that ζ =
∑p

i=1 λ̃iζi for some ζi ∈ ∂cfi(x̂). The
(Φ, ρ)−invexity of fi functions at x̂ and the convexity of Φ(x, x̂, ., .) imply that

Φ
(
x, x̂, ζ, ρ(x, x̂)

)
= Φ

(
x, x̂,

p∑
i=1

λ̃iζi,

p∑
i=1

λ̃iρ(x, x̂)
)

≤
p∑

i=1

λ̃iΦ
(
x, x̂, ζi, ρ(x, x̂)

)
≤

p∑
i=1

λ̃i
(
f(x)− f(x̂)

)
=

p∑
i=1

λ̃ifi(x)−
p∑

i=1

λ̃ifi(x̂).

Thus, (10) is proved. Now, (9) and the (Φ, ρ)−invexity of
∑p

i=1 λ̃ifi at x̂ conclude that
p∑

i=1

λ̃iΦ
(
x0, x̂, ξ̂i, ρ(x0, x̂)

)
≤

p∑
i=1

λ̃ifi(x0)−
p∑

i=1

λ̃ifi(x̂) < 0.

This means Υ(x̂, ξ̂, λ̃) < 0, which contradicts the assumption.

The following new definition will be required in the sequel.
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Definition 5. A locally Lipschitz function ℏ : Rn → R is said to be “symmetric
(Φ, ρ)-invex” at x̃ ∈ Rn if

• ℏ is (Φ, ρ)-invex at x̃,

• Φ(x̃, x̃, ξ, ρ(x̃, x̃)) = 0 for all ξ ∈ ∂cℏ(x̃).

ℏ(.) is said to be symmetric (Φ, ρ)-invex, if it is symmetric (Φ, ρ)-invex at each point
in its domain.

We recall from [23] that for r-convex (r ∈ R+) functions we have ρ(x, y) := r and

Φ
(
x, y, ξ, ρ

)
= ⟨ξ, y − x⟩+ r∥x− y∥2.

So, r-convex functions are symmetric (Φ, ρ)-invex. Also, the skew invex functions,
which are defined in [22], are examples for nonconvex symmetric (Φ, ρ)-invex functions.
The following example shows that a symmetric (Φ, ρ)-invexity function does not need
to be invex.

Example 2. Consider a function Φ : R× R× R× R → R defined by

Φ(x, y, u, w) :=


− u

3y2
|x3 − y3| if y ̸= 0,

w|x3| if y = 0.

Let x and y be arbitrary elements of R. Since Φ(x, y, ., .) is a linear function and

Φ(x, y, 0, r) =

{
0 if y ̸= 0,

r|x3| if y = 0,

the conditions (12) and (26) hold. Take ρ(x, y) := −1 for all x, y ∈ R, and ℏ(x) := x3.
Since ℏ(.) is continuously differentiable on R, then ∂cℏ(y) = {3y2}. Now, owing to

Φ(x, y, 3y2,−1) =

{
−|x3 − y3| if y ̸= 0,

−|x3| if y = 0,

≤ x3 − y3 = ℏ(x)− ℏ(y),

we understand that ℏ(.) is a (Φ, ρ)−invex function at each y ∈ R with respect to R.
Also, th equality of

Φ(y, y, 3y2,−1) = 0,

shows that ℏ(.) is a symmetric (Φ, ρ)−invex function at each y ∈ R. Furthermore, as
it follows by [3, Theorem 1], ℏ(.) is not an invex function on R.
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Theorem 7. Let x̂ ∈ M be a weakly efficient solution of (P) and CCQ holds at x̂.
Suppose that for each i ∈ I the fi function is symmetric (Φ, ρi)-invex at x̂, and for each
t ∈ T (x̂) the gt function is (Φ, ρt)-invex at x̂, satisfying

ρr(y, x̂) ≥ 0, ∀r ∈ I ∪ T (x̂), ∀y ∈M. (11)

Then, there exist ξ := (ξ1, . . . , ξp) ∈
∏p

i=1 ∂cfi(x̂) and λ := (λ1, . . . , λp) ≥ 0p with∑p
i=1 λi = 1, such that Υ(x̂, ξ, λ) = 0.

Proof. According to Theorem 2, we can find some λi ≥ 0 and ξi ∈ ∂cfi(x̂) (for i ∈ I)
with

∑p
i=1 λi = 1, a finite subset T ∗ for T (x̂), some µt ≥ 0 and ζt ∈ ∂cgt(x̂) (for t ∈ T ∗),

such that ∑
i∈I

λiξi +
∑
t∈T ∗

µtζt = 0n. (12)

For each (i, t) ∈ I × T ∗ set

λ̂i :=
λi

1 +
∑

t∈T ∗ µt
, and µ̂t :=

µt
1 +

∑
t∈T ∗ µt

.

Assume that t ∈ T ∗ and y ∈ M are arbitrarily chosen. Since T ∗ ⊆ T (x̂), the (Φ, ρt)-
invexity of gt implies that

gt(y) ≤ 0 = gt(x̂) =⇒ Φ
(
y, x̂, ζt, ρt(y, x̂)

)
≤ 0, ∀y ∈M.

So, by µ̂t ≥ 0 (for t ∈ T ∗), we get∑
t∈T ∗

µ̂tΦ
(
y, x̂, ζt, ρt(y, x̂)

)
≤ 0, ∀y ∈M. (13)

On the other hand, Definition 3, (11) and (12) conclude that

0 ≤ Φ
(
y, x̂, 0n,

∑
i∈I

λ̂iρi(y, x̂) +
∑
t∈T ∗

µ̂tρt(y, x̂)
)

= Φ
(
y, x̂,

∑
i∈I

λ̂iξi +
∑
t∈T ∗

µ̂tζt,
∑
i∈I

λ̂iρi(y, x̂) +
∑
t∈T ∗

µ̂tρt(y, x̂)
)
nonumber (14)

≤
∑
i∈I

λ̂iΦ
(
y, x̂, ξi, ρi(y, x̂)

)
+
∑
t∈T ∗

µ̂tΦ
(
y, x̂, ζt, ρt(y, x̂)

)
, (15)

where (15) is implied by
∑

i∈I λ̂i+
∑

t∈T ∗ µ̂t = 1 and convexity of Φ(y, x̂, ., .). Combining
the last inequality and (13), yields∑

i∈I
λ̂iΦ

(
y, x̂, ξi, ρi(y, x̂)

)
≥ 0 =⇒

∑
i∈I

λiΦ
(
y, x̂, ξi, ρi(y, x̂)

)
≥ 0, ∀y ∈M. (16)

Since the symmetric (Φ, ρi)-invexity of fi functions at x̂ concludes
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∑
i∈I

λiΦ
(
x̂, x̂, ξi, ρi(x̂, x̂)

)
= 0,

the inequality (16) deduces that

Υ(x̂, ξ, λ) = inf
y∈M

{
p∑

i=1

λiΦ
(
y, x̂, ξi, ρi(y, x̂)

)}
= 0,

as requested.

Applying Theorems 3 and 4, and repeating the proof of Theorem 7, we can state
the following theorem for efficient and properly efficient solutions of (P ), respectively.

Theorem 8. Assume that x̂ ∈M is an efficient solution of (P), the (MCQ) is satisfied
at x̂, and (1) holds. Suppose that for each i ∈ I the fi function is symmetric (Φ, ρi)-
invex at x̂, and for each t ∈ T (x̂) the gt function is (Φ, ρt)-invex at x̂, satisfying (11).
Then, there exist ξ := (ξ1, . . . , ξp) ∈

∏p
i=1 ∂cfi(x̂) and λ := (λ1, . . . , λp) > 0p with∑p

i=1 λi = 1, such that Υ(x̂, ξ, λ) = 0.

Theorem 9. Suppose that x̂ is a properly efficient solution for (P ) and CCQ holds at
x̂. Suppose that for each i ∈ I the fi function is symmetric (Φ, ρi)-invex at x̂, and for
each t ∈ T (x̂) the gt function is (Φ, ρt)-invex at x̂, satisfying (11). Then, there exist
ξ := (ξ1, . . . , ξp) ∈

∏p
i=1 ∂cfi(x̂) and λ := (λ1, . . . , λp) > 0p with

∑p
i=1 λi = 1, such that

Υ(x̂, ξ, λ) = 0.

We note that the difference between the Theorem7 with Theorems 8 and 9 is that
in the first we have λ ≥ 0p, whereas in the latter ones we have λ > 0p. Also, it is worth
mentioning that the presented results generalize

5 Conclusion

In this paper, we considered the class of nonsmooth multiobjective optimization prob-
lems with arbitrary many constraints. We proved a Karush-Kuhn-Tucker type optimal-
ity condition for properly efficient solutions of the problems. We introduced a new gap
function that can characterizes efficient, weakly efficient, and properly efficient solutions
the problem, under (Φ, ρi)-invexity and symmetric (Φ, ρi)-invexity assumptions.
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1 Introduction

Radial basis functions (RBFs) interpolation is a technique for representing a function starting
with data on scattered points. This technique first appears in the literature as a method for
scattered data interpolation, and interest in this method exploded after the review of Franke
[1], who found it to be the most impressive of the many methods he tested. Later, Kansa [2, 3]
proposed a scheme for the estimation of partial derivatives using RBFs. The main advantage
of radial basis functions methods is the meshless characteristic of them. The use of radial
basis functions as a meshless method for the numerical solution of partial differential equations
(PDEs) is based on the Collocation method. These methods have recently received a great deal
of attention from researchers [4, 5, 6, 7, 8, 9].

Recently, RBFs methods were extended to solve various ordinary and partial differential
equations including the high order ordinary differential equations [10], second-order parabolic
equation with nonlocal boundary conditions [11, 12], the nonlinear Fokker-Planck equation [13],
optimal control problems [14], the viscous flow over nonlinearly stretching sheet with chemical
reaction, heat transfer and magnetic field [15], the unsteady flow of gas in a semi-infinite porous
medium [16] nonlinear differential and integral equations [17, 18, 19], Second-order hyperbolic
telegraph equation [20], the solution of 2D biharmonic equations [21], the case of heat transfer
equations [22] and so on [23, 24, 25].

An RBF ψ(∥x − xi∥) : R+ −→ R depends on the separation between a field point x ∈ Rd

and the data centers xi , for i = 1, 2, ..., N , and N data points. The interpolants are classed
as radial due to their spherical symmetry around centers xi, where ∥.∥ is the Euclidean norm.
One of the most powerful interpolation method with analytic two-dimensional test function is
the RBFs method based on multiquadric (MQ) basis function

ψ(r) =
√
r2 + c2 , (1)

suggested by R.L. Hardy [26], where r = ∥x − xi∥ and c is a free positive parameter, often
referred to as the shape parameter, to be specified by the user. Madych and Nelson [27] showed
that interpolation with MQ is exponentially convergent based on reproducing kernel Hilbert
space. Convergence property of the MQ has been also showed by Buhman [28, 29]. Too large or
too small shape parameter c in (1) make the MQ too flat or too peaked. Despite many research
works presented to finding algorithms for selecting the optimum values of c [30, 31, 32, 33, 34],
the optimal choice of shape parameter is an open problem which is still under intensive inves-
tigation.
The interested reader is referred to the recent books and paper by Buhmann [28, ?] and Wend-
land [35] for more basic details about RBFs, compactly and globally supported and convergence
rate of the radial basis functions.
Center nodes {xi}Ni=1 are not necessarily structured, that is, they can have an arbitrary distri-
bution. The arbitrary grid structure is one of the major differences between the RBFs methods
and other global methods. Such a mesh-free grid structure yields high flexibility especially
when the domain is irregular. Finding the Center nodes in RBF methods is too important
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an open problem. In this work, we aim to select the best center nodes based on convergence,
condition number of interpolation matrix, time and memory with a famous MCDM method
named PROMETHEE.

Today, complex decisions in various conditions are under influence of frequent and different
factors and criteria which have a significant and deniable role in consequence and effects of
decisions and we cannot simply and base of the common methods find response for them but
we should use (hang on to) modern scientific methods. MCDM problem is a well known
branch of decision theory. It has been found in real life decision situations [36, 37, 38, 39].
In general, decision-making is the study of identifying and choosing alternatives based on the
values and preferences of the decision-maker. Making a decision implies that some alternatives
are to be considered, and that one chooses the alternative(s) that possibly best fits with the
goals, objectives, desires and values of the problem. MCDM is a powerful tool used widely
for evaluation and ranking problems containing multiple, usually conflicting, criteria [40], as
how it is in finding the best center nodes in RBF methods. A lot of researchers have devoted
themselves to solve MCDM [41, 42, 43, 44, 45, 46, 47, 48, 49, 50].

Several approaches have been proposed for multicriteria decision and the relevant meth-
ods were developed and applied with more or less success depending on the specific problem
[51]. Among numerous methods of MCDM, The Preference Ranking Organization Method for
Enrichment Evaluation (PROMETHEE) is significantly suitable for ranking applications [40].
PROMETHEE brings together flexibility and simplicity for the user [52] and is quite simple
in conception and application compared to other methods for multicriteria analysis [53]. The
PROMETHEE method and their applications has attracted much attention from academics
and practitioners [54]. It is well adapted to problems where a finite number of alternative
actions are to be ranked considering several, sometimes conflicting, criteria [51]. This method
is a relatively simple ranking method, which is perfectly intelligible for the decision maker and
is accepted as one of the most intuitive MCDM methods [55]. It is one of the best known
and most widely applied outranking method because it follows a transparent computational
procedure and can be easily understood by actors and DMs [56]. The PROMETHEE method
has found a vast scope of application such as logistics and transportation [57, 58], environment
management [59, 60], finance [61, 62], chemistry [63], production planning [64, 65, 66], energy
management [67], service [68, 69], sport [70] and supply chain management [71, 72].

The PROMETHEE model has many advantages, in comparison to other MCDM models,
such as structuring the issue, the amount of data that could be processed, the possibility to
quantify the qualitative values, software support and presentation of the results [73]. Hence
we used PROMETHEE Technique to rank possible alternatives due to its coordination with
the structure of the issue, popularity, vast usage, remarkable outcomes, being easy to use and
professional software.

This paper is arranged as follows: in Section 2, we describe the properties of radial basis
functions. Two approaches based on radial basis functions for approximate the solution of
linear operation by using collocation method are applied. In section 3, the PROMETHEE
methodology is described. we give computational results of numerical experiments with methods
based on preceding sections, to support our theoretical discussion in section 4. The conclusions
are discussed in the final Section.
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2 Radial basis functions

2.1 Definition of radial basis functions

Let R+ = {x ∈ R, x ≥ 0} be the non-negative half-line and let ψ : R+ → R be a continuous
function with ψ(0) ≥ 0. A radial basis function on Rd is a function of the form

ψ(∥x− xi∥) ,

where x, xi ∈ Rd and ∥.∥ denotes the Euclidean distance between x and xis. If one chooses N
points {xi}Ni=1 in Rd then by custom

s(x) =
N∑
i=1

λiψ(∥x− xi∥); λi ∈ R

is called a radial basis function as well [74].

2.2 RBFs interpolation based on Kansa approach

We now discuss Kansa’s collocation method. Assume we are given a domain Ω ⊂ Rd, and a
linear operator of the form

L[u](x, t) = H(x, t) , x ∈ Ω , t ∈ [0, T ), (2)

with initial and boundary conditions

I[u](x) = f(x) , x ∈ Ω , t = 0, (3)
B[u](x) = g(x, t) , x ∈ ∂Ω , t ∈ [0, T ). (4)

Then we approximate u by radial basis functions as

u(x̂) =
N∑
i=1

λiψ(∥x̂− x̂i∥) , (5)

where x̂ = (x, t). The simplest possible setting is shown in expansion (5). The Collocation
matrix is constructed by matching the differential equation (2) and the initial and boundary
conditions (3) and (4) at the collocation nodes {x̂j}Nj=1 of the form

A =

 B[Ψ]

I[Ψ]

L[Ψ]

 , (6)

where the blocks of matrix is generated in Appendix 1.
Kansa’s method is an unsymmetric RBF Collocation method based upon the MQ interpolation
functions. Although the above approach has been applied successfully in several cases [6, 7, 10,
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11, 22, 75], no existence of solution and convergence analysis is available in the literature and,
for some cases, it has been reported that the resulting matrix was extremely ill–conditioned.
The condition number of the above interpolation matrix for smooth RBFs like Gaussian or
multiquadrics are extremely large.

Several techniques have been proposed to improve the conditioning of the coefficient matrix
and the solution accuracy. Fasshauer [76] suggested an alternative approach to the unsymmetric
scheme based on the Hermite interpolation property of the radial basis functions. The advantage
of the Hermite-based approach is that the matrix resulting from the scheme is symmetric, as
opposed to the completely unstructured matrix of the same size resulting from unsymmetric
schemes.

2.3 RBFs interpolation based on Hermite approach

It is possible to represent the solution u of the above boundary value problem in terms of the
following Hermite RBF (HRBF) interpolation:

u(x̂) =
∑N0

i=1 λiB
∗[ψ](∥x̂− x̂i∥) +

∑N1

i=N0+1 λiI
∗[ψ](∥x̂− x̂i∥)

+
∑N

i=N1+1 λiL
∗[ψ](∥x̂− x̂i∥) ,

where N0 and N1−N0 denote the number of nodes on ∂Ω× [0, T ) and Ω×{0} and N−N1−N0

the number of internal nodes. In the above expression L∗, I∗ and B∗ are the operators used
in (2), (3) and (4), but acting on ψ viewed as a function of the second argument x̂i [76]. This
expansion for u(x̂) leads to a collocation matrix A which is of the form

A =

 B
[
B∗[Ψ]

]
B
[
I∗[Ψ]

]
B
[
L∗[Ψ]

]
I
[
B∗[Ψ]

]
I
[
I∗[Ψ]

]
I
[
L∗[Ψ]

]
L
[
B∗[Ψ]

]
L
[
I∗[Ψ]

]
L
[
L∗[Ψ]

]
 , (7)

where the blocks generated in Appendix 2.
The matrix (7) is of the same type as the scattered HRBF interpolation matrices and thus non-
singular as long as is ψ chosen appropriately. A major point in favour of the HRBF approach is
that the matrix resulting from the scheme is symmetric, as opposed to the completely unstruc-
tured matrix (6) of the same size. The convergence proof for HRBF interpolation was given
by Wu [77] who also recently proved the convergence of this approach when solving PDEs [78];
see also [79]. A comparison analysis between unsymmetric and symmetric radial basis function
collocation methods for the numerical solution of partial differential equations is described in
paper by Power [80].

3 PROMETHEE Methodology

PROMETHEE is a MCDM method developed by Brans et al. [81]. It is a ranking method quite
simple in conception and application compared to other methods for multi-criteria analysis [82].
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Let A be a set of alternatives and gj(a) represent the value of criterion gj(a), j = 1, 2, · · · , J of
alternative a ∈ A. As the first step in PROMETHEE a preference function Fj(a, b) is defined
for each pair of actions for criterion gj .Assuming that more is preferred to less. Where qi and
pi are indifference and preference thresholds for ith criterion respectively.

Fj(a, b) = 0 if gj(a)− gj(b) ≤ qj

Fj(a, b) = 1 if gj(a)− gj(b) ≥ pj

0 < Fj(a, b) < 1 if qj < gj(a)− gj(b) < pj

Different shapes (six types) for Fj have been suggested. If a is better than b according to jth
criterion, Fj(a, b) > 0, otherwise Fj(a, b) = 0. Using the weights wj assigned to each criterion
(where

∑
wj = 1), one can determine the aggregated preference indicator as follows:

Π(a, b) =
∑

wjfj(a, b).

If the number of alternatives is more than two, overall ranking is done by aggregating the
measures of pair wise comparisons. For each alternative a ∈ A, the following two outranking
dominance flows can be obtained with respect to all the other alternatives x ∈ A:

φ+(a) =
1

n− 1

∑
x∈A

Π(a, x) leaving flow.

The leaving flow is the sum of the values of the arcs leaving node a and therefore provide a
measure of the outranking character of a. The higher φ+(a), is the better alternative a,

φ−(a) =
1

n− 1

∑
x∈A

Π(x, a) entering flow.

The entering flow measures the outranked character. The smaller φ−(a), is the better alter-
native a [83]. For each alternative a, it is obvious that we can also determine the net flow for
each criterion separately. Let us define the net flow for criterion gj as follows:

φj(a) =
1

n− 1

∑
x∈A

(Fj(a, x)− Fj(x, a)).

φj(a) quantifies the position of alternative a according to criterion j with respect to all the
other alternatives in the set A. The larger the single criterion net flow the better alternative a
on criterion gj .
According to PROMETHEE I, action a is superior to action b if the leaving flow of a is greater
than the leaving flow of b and entering flow of a is smaller than the entering flow of b.

a outranks b if : φ+(a) ≥ φ+(b) and φ−(a) ≤ φ−(b).

Equality in φ+ and φ− indicates indifference among the two compared alternatives. Two
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alternatives are considered incomparable if alternative a is better than alternative b in terms of
leaving flow, while the entering flows indicate the reverse [82]:

[φ+(a) > φ+(b) and φ−(a) > φ−(b)] or [φ+(a) < φ+(b) and φ−(a) < φ−(b)].

PROMETHEE II provides a complete ranking of the alternatives from the best to the worst
one by

Φ(a) = φ+(a)− φ−(a).

The implementation of PROMETHEE requires two additional types of information, namely:
(1) information on the relative importance that is the weights of the criteria considered, (2)
information on the decision-maker�s preference function, which he/she uses when comparing the
contribution of the alternatives in terms of each separate criterion [84]. This function is used to
compute the degree of preference associated to the best action in case of pairwise comparisons
[85]. When we compare two alternatives a and B, we must be able to express the result of
these comparisons in terms of preference. Then we consider a preference function Φ [84]. There
are six basics types of preference functions proposed by Brans and Vincke [86]. with the aim
of enabling the selection of specific preference function, which can be listed as usual function,
U-shape function, V-shape function, level function, linear function and Gaussian function.

4 Algorithm explain with examples

The proposed approach is applied in two partial differential equations. we aim to choose best
centers nodes of RBFs by applying Kansa and HRBF collocation method. Finding the best
nodes between the set of nodes for example: uniform, cartesian, Chebyshev for these methods
is an open problem. Thus ranking or choosing the appropriate methods by using suitable center
nodes is so important in RBFs approximation.
In order to learn more about using of mentioned techniques in real environment, we impediment
the proposed algorithms steps with a concrete examples.
In the process of using the model, we perform the three following steps:
1st step: Determination of fundamental criteria and Alternatives.
2nd step: Rating of cases with the help of PROMETHEE technique.
3rd step: Analyzing of consequences.

4.1 Determination of fundamental criteria and Alternatives

Here, two following classical heat equation is solved by using Kansa and HRBF method with
MQ function.
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ut(x, t) = ∇u(x, t) + f(x, t), in Ω× J,

u(x, 0) = g(x), x ∈ Ω,

Bu(x, t) = h(x, t), on ∂Ω× J,

Example 1: the Homogeneous one-dimensional case :

g(x1) = sin(x1), 0 < x1 < π , t > 0,

u(0, t) = 0, u(π, t) = 0.

Exact solution: u(x1, t) = sin(x1) e
−2t .

Example 2: the Inhomogeneous two-dimensional case :

f(x1, x2, t) = sin(x1) sin(x2)e
−t − 4,

g(x1, x2) = sin(x1) sin(x2) + x21 + x22, 0 < x1, x2 < π , t > 0,

u(0, x2, t) = x22, u(x1, 0, t) = x21,

u(π, x2, t) = x22 + π2, u(x1, π, t) = x21 + π2.

Exact solution: u(x1, x2, t) = sin(x1) sin(x2)e
−t + x21 + x22 .

The error is root mean square (RMS) and obtained as:

RMS =

√∑M
k=1

(
u(xk, tk)− uN (xk, tk)

)2
M

.

where u(xk, tk) and uN (xk, tk) are achieved by exact and approximate solution on (xk, tk), and
M is number of test points. Also we consider shape parameter equals one for the both examples
and all cases.
Tables (1) and (2) show determination of fundamental criteria and Alternatives for each two
examples.

Tables (3) and (4) show grading of cases in example 1 for N = 36, 100. Table (5) shows

Table 1: Fundamental criteria

Label C1 C2 C3

Criteria Error Condition Number Time.Memory

Table 2: Alternatives in nodes and methods

Label A1 A2 A3 A4 A5

Kansa nodes Uniform Grid Legendre Chebyshev LGL Cartesian
Label A6 A7 A8 A9 A10

HRBF nodes Uniform Grid Legendre Chebyshev LGL Cartesian

grading of cases in example 2 for N = 512.
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Table 3: Grading of cases in example 1 for N = 36.

N C1 C2 C3

Min/Max Min Min Min
Preference Function Usual Usual Usual

Unit Numerical×10+7 Numerical×10−5 Kbs
A1 580 370 337.04

A2 480 300 365.75

A3 410 170 323.13

A4 330 105 323.10

A5 500 100 328.99

A6 10 2.9 373.09

A7 5 3.6 310.40

A8 4 2.6 328.18

A9 5 1.5 346.19

A10 7 1.2 324.72

Table 4: Grading of cases in example 1 for N = 100.

N C1 C2 C3

Min/Max Min Min Min
Preference Function Usual Usual Usual

Unit Numerical×10+7 Numerical×10−9 Kbs
A1 4.100 190 1109.12

A2 2.700 340 1409.06

A3 2.600 390 1249.81

A4 0.520 120 1285.24

A5 20.00 17000 1124.74

A6 0.031 15.0 1457.08

A7 0.010 1.7 2061.45

A8 0.003 1.1 1985.16

A9 0.004 12.3 1984.85

A10 0.090 13.0 2084.07

4.2 Rating of the cases with the help of PROMETHEE technique

In our study, one of the most frequently used preference function type in the literature and the
most suitable preference function type to the characteristic of our problem, the usual function
(it was introduced at Section 3) is selected for the evaluation. In next step we should evaluate
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Table 5: Grading of cases in example 2 for N = 512.

N C1 C2 C3

Min/Max Min Min Min
Preference Function Usual Usual Usual

Unit Numerical×10+7 Numerical×10−9 Kbs
A1 500.00 810.0 5400

A2 37.00 230.0 5914

A3 71.00 130.0 6101

A4 10.00 110.0 6010

A5 83.00 510.0 5913

A6 3.20 9.7 6310

A7 0.31 3.4 6897

A8 0.48 1.2 6911

A9 0.17 1.1 7110

A10 0.87 4.7 6981

them by analyzing the cases in each criterion, and finally by correct rating of cases, choose the
best case. For this purpose, he can perform steps of PROMETHEE technique to the end or for
ease of calculation; he can use the relevant software like DECISION LAB.
After completing the grading table, we can easily derive the rating consequences of the cases
by using of PROMETHEE technique, Also we can evaluate and analyze the consequences by
using of graphical capabilities of the software DECISION LAB, like Gaia planes.
Figure 1 displays ranking of cases with the help of PROMETHEE II technique with N = 36

for example 1. This ranking shows that HRBF method by using Legendre points are the most
suitable choices as RBF methods and center nodes. The output figure listing the outsourcers
with N = 100 for example 1 is given in Figure 2. As seen in the figure, the best choice in the
center nodes may be changed in big number of nodes, but HRBF is the more appropriate than
Kansa’s method yet. Figure 3 shows PROMETHEE II output for all two scenarios N = 36

and N = 100. This ranking shows that HRBF method by using Chebyshev points as center
nodes is the best choice. In Figure 4, the outsourcers are listed with N = 512 for example 2.
This ranking shows that HRBF method by using Legendre or Legendre-Gauss-Lobatto (LGL)
points as center nodes are the most suitable choices. Moreover, The geometrical analysis for
interactive aid (GAIA) plane which displays the relative position of the alternatives graphically,
in terms of contributions to the various criteria is given in Figures 5, 6 and 7.



37F. Hadinejad, S. Kazem/ COAM, 3(2), Autumn-Winter 2018

Figure 1: Example 1: Rating of cases with the help of PROMETHEE II technique with N = 36.

Figure 2: Example 1: Rating of cases with the help of PROMETHEE II technique with N = 100.

Figure 3: Example 1: PROMETHEE II output: final scores of Alternatives.

Figure 4: Example 2: Rating of cases with the help of PROMETHEE II technique with N = 512.

The GAIA plane was used in order to determine discriminating power of each criterion,
aspects of correspondence and conflicts as well as the quality of each alternative by each crite-
rion. Alternatives are presented by triangles and criteria by axes with square ends. Eccentric
position of square of the criterion represents the volume of influence of that criterion, while
correspondence between some criteria is defined by approximately the same direction of axe of
those criteria. Criteria vectors expressing similar preferences on the data are oriented in the
same direction, while conflicting criteria are pointing in opposite directions. The length of each
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Figure 5: Example 1: Gaia planes with N = 36.

Figure 6: Example 1: Gaia planes with N = 100.

Figure 7: Example 2: Gaia planes with N = 512.

vector is a measure of its power in options’ differentiation. Vector φ (decision axis) represents
the direction of the compromise derived from the weights assignment.
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4.3 consequences analysis with the help of DECISION LAB soft ware

Despite we can use potential adverse of the software in analyzing the sensitivity and determi-
nation of effectiveness of criteria validity. This capability help decision maker to observe the
results of ranking when wights of criteria changed. For example, because of importance of the
error in function approximations, the following figures show the consequences of rating of cases
in 2 different forms with validities changed in first criteria.
Figure 8 displays of the cases according to the first weights of the criteria. Figure 9 shows of
the cases according to the increase weight first criteria (0.33 to 0.50).

Figure 8: Example 1: Position of the cases according to the first weights of the criteria.
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Figure 9: Example 1: Position of the cases according to the increase weight first criteria (0.33 to
0.50).

As observed, by changing the validity of the criteria, rating of the cases totally will be
changed, so the applicants can evaluate the consequences of the factors validities changed in
the final rating of the cases by using this method and also evaluate the effectiveness of each
criterion.

5 Conclusions

Humans always are deciding in different conditions of their life and follow to find an appropriate
solution for their problems; but decision making process is sometimes very complicated and
necessity to assistance and counseling is unavoidable. So in the recent years, mathematical
methods and knowledge of computer, as a helping decision making system has helped decision
maker and create new branches and methods like MCDM techniques and decision support
systems. Thus, we has used these technique in this research to optimize decision making of
selecting the best radial basis functions methods and centers nodes.
Here, Two methods based on radial basis functions for approximate the solution of partial
differential equation by using collocation method are applied. By choosing five sets of center
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nodes: Uniform grid, Cartesian, Chebyshev, Legendre and LGL as Alternatives and achieving
the error, Condition number of interpolation matrix and memory time as criteria, rating of
cases with the help of PROMETHEE II technique is obtained. This ranking shows that Hermite
interpolation by using non-uniform nodes as center nodes is appropriate when we applied RBF
methods for solving partial differential equations.
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Appendix 1.

B[Ψ]ji = B[ψ](∥x̂j − x̂i∥) , x̂j ∈ ∂Ω× [0, T ) , x̂i ∈ Ω× [0, T ) ,

I[Ψ]ji = I[ψ](∥x̂j − x̂i∥) , x̂j ∈ Ω× {0} , x̂i ∈ Ω× [0, T ) ,

L[Ψ]ji = L[ψ](∥x̂j − x̂i∥) , x̂j ∈ Ω◦ × [0, T ) , x̂i ∈ Ω× [0, T ) .

Here we identify the collocation points same as center points. Ω◦ is interior of Ω. The problem
is well-poses if the linear system AΛ = C has unique solution [76]. C is defined of the form

C =

 g(x̂j)

f(x̂j)

H(x̂j)

 . (8)

We note that a change in boundary conditions (4) is as simple as changing rows in matrix A in
(6) as well as on the right hand side C in (8).
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1 Introduction

We consider the following multiobjective mathematical programming with vanishing constraints
(MMPVC in brief):

MMPVC : min
x∈Ω

F (x) := (f1(x), . . . , fp(x)),

Ω :=
{
x ∈ Rn | Hi(x) ≥ 0, Gi(x)Hi(x) ≤ 0, i ∈ I

}
, (1)

where, the considered functions fj (for j ∈ J := {1, . . . , p}), Hi (for i ∈ I := {1, . . . ,m}), and
Gi (for i ∈ I) are convex, not necessarily differentiable, and defined from Rn to R.

If p = 1, then MMPVC reduces to “mathematical programming with vanishing constraints”
(MPVC) which were introduced by Kanzow and his coauthors in 2007 [1, 9]. After defining
the MPVC, finding the optimality conditions, named stationary conditions, for it become an
interesting subject for some researchers; see [7, 8, 9, 13] in smooth case and [10, 11] in nonsmooth
case).

If Gi(x) = 0 for i ∈ I, the MMPVC coincides to classical multiobjective programming
problem which is an important field in optimization theory. Also, the MMPVC is a direct
generalization for the following “mathematical problem with equilibrium constraints” (MPEC),
considered in a lot of papers (see [14, 16] and their references):

min F (x)

s.t. Hi(x) ≥ 0, Gi(x) ≥ 0, i ∈ I,

Gi(x)Hi(x) = 0, i ∈ I.

To the best of our knowledge, there is no work available dealing with MMPVC with nondif-
ferentiable data, and the present paper is the first to consider it. So far under differentiablity
assumption, there is only one conference paper that considered MMPVC [12].

As well as classic multiobjective optimization, we can consider different kinds of optimality
(efficiency) for MMPVC, including weakly efficient, efficient, strictly efficient, isolated efficient,
and properly efficient solutions. Some characterizing of weakly efficient solutions for MMPVCs
with smooth data are presented in [12]. In order to obtain optimality in which, given any
objective, the trade-off between that objective and some other objective is bounded, Geoffrion
[3] suggested restricting attention to efficient solutions that are proper. After Geoffrion, proper
efficiency became a very important notion in studying multiobjective optimization, and many
definitions for proper efficiency were introduced in literature, such as those introduced by Ben-
son, Borwein, Henig, Kuhn-Tucker; see [2] for a comparison among the main definitions of this
notion. Here, we will consider the newest definition of proper efficiency that is introduced in
[4], and will characterize it for nonsmooth convex MMPVC. This characterization is made for
the first time, even for MMPVCs with smooth data.

Since the product function of two convex functions is not necessarily convex, the feasible set
Ω is not necessarily convex. Consequently, to set optimality conditions for properly efficient so-
lutions of MMPVC, we can select different normal cones for S. Here we focus on Mordukhovich
normal cone of Ω. This kind of optimality condition has been studied in [7, 8, 9, 14, 16] for
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MPVCs and MPECs. We would mention that all mentioned references to MPVC have con-
sidered the problems with continuously differentiable functions, and the present paper extends
their results to MMPVC with nondifferentiable functions.

The structure of this paper is as follows: Section 2 contains some definitions and theorems
from convex analysis and non-smooth analysis. In section 3, we will introduce a new constraint
qualification for MMPVC, and will present a necessary condition for properly efficient solutions
of MMPVC. Then, we will show our necessary condition is also sufficient under some weak
assumptions.

2 Preliminaries

In this section we present some preliminary results on convex analysis and nonsmooth analysis
from [6, 15]. Suppose that g : Rn → R is a convex function, and x0 ∈ Rn. The subdifferential
of g at x0 is defined as

∂g(x0) := {ζ ∈ Rn | g(x)− g(x0) ≥ ⟨ζ, x− x0⟩ , ∀x ∈ Rn}.

Notice that if g1 and g2 are two convex functions from Rn to R, and α is a non-negative real
number, then αg1 + g2 is convex and

∂(αg1 + g2)(x0) = α∂g1(x0) + ∂g2(x0).

Let φ : Rn → R be a locally Lipschitz function. The Mordukhovich subdifferential of φ at x0
is defined as

∂Mφ(x0) := lim sup
x→x0

{
ξ ∈ Rn | lim inf

y→x

φ(y)− φ(x)−
〈
ξ, y − x

〉
∥y − x∥

≥ 0
}
.

We observe that if g is a convex function, then ∂Mg(x0) = ∂g(x0) and ∂M (−g)(x0) = −∂g(x0).
Also, for two locally Lipschitz functions φ1 and φ2 from Rp to R, and for an arbitrary real
number α, we have

∂M
(
αφ1 + φ2

)
(x0) ⊆ α∂Mφ1(x0) + ∂Mφ2(x0).

Notice that if x0 is a minimizer of φ on Rp, then 0p ∈ ∂Mφ(x0), where 0p denotes the zero
vector of Rp.
The Mordukhovich normal cone of a closed subset Λ ⊆ Rp at x0 ∈ Λ is defined by NM (Λ, x0) :=

∂MIΛ(x0), where

IΛ(x) :=

{
0 x ∈ Λ,

+∞ x /∈ Λ.

It is not difficult to show that for given Λi ⊆ Rpi and x(i) ∈ Λi, i = 1, . . . , s, we have

NM

(
Λ1 × · · · × Λs,

(
x(1), . . . , x(s)

))
= NM

(
Λ1, x

(1)
)
× · · · ×NM

(
Λs, x

(s)
)
. (2)

If h(y) = (h1(y), . . . , hs(y)), where his are locally Lipschitz from Rn to R, and x∗ = (x∗1, . . . , x
∗
s),

then the Mordukhovich coderivative of h is defined as
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D∗h(y)(x∗) = ∂M

(
s∑

k=1

x∗khk(y)

)
(y).

Let Π : Rr ⇒ Rs be a set-valued function, and x̄ ∈ Π(ȳ). We say that Π is calm at (y, x) if
there exist some L > 0 and neighborhoods U and V around x and y, respectively, such that
dΠ(y)(x) ≤ L∥y − y∥,for all y ∈ V and x ∈ U ∩ Π(y), where dΠ(y)(x) denotes the distance
between x to Π(y).

Theorem 1. [5, Theorem 4.1] Suppose that the set-valued mapping 𝟋 : Rl ⇒ Rk is defined as

𝟋(y) := {x ∈ C | g(x) + y ∈ E},

where the function g : Rk → Rl is locally Lipschitz and (C,E) ⊆ Rk ×Rl is closed. If 𝟋 is calm
at (0, x) ∈ Gph𝟋, then

NM

(
𝟋(0), x

)
⊆

⋃
y∗∈NM (E,g(x))

D∗g(x)(y∗) +NM (C, x).

Theorem 2. [5, Corollary 3.4] Consider the set-valued function 𝟋 : Rp ⇒ Rk,

𝟋(y) := {x ∈ Rk | g(x, y) ∈ E},

where g : Rk ×Rp → Rq is locally Lipschitz and E ⊆ Rq is closed. Let (ȳ, x̄) ∈ Gph𝟋. Further,
assume the following qualification condition holds,⋃

z∗∈NM (E,g(x̄,ȳ))\{0}

[∂M ⟨z∗, g⟩(x, y)]x = ∅,

where [ ]x denotes projection onto the x-component. Then, 𝟋 is calm at (ȳ, x̄).

For two vectors x, y ∈ Rp, the inequality x ≦ y stands for xi ≤ yi for all i ∈ {1, 2, . . . , p}.
The inequality x ≤ y means x ≦ y and x ̸= y. Furthermore, x < y stands for xi < yi for all
i ∈ {1, 2, . . . , p}.

3 Main Results

At the start of this section, we recall that the feasible solution set of MMPVC which is defined
in (1) is denoted by Ω. Also, we recall the following definition from [4, pp. 110].

Definition 1. A feasible point x0 ∈ Ω is called a properly efficient solution to MMPVC when
there exists a vector λ > 0p such that

⟨λ, F (x0)⟩ ≤ ⟨λ, F (x)⟩, ∀x ∈ Ω.

Throughout this paper, we fix a feasible point x̂ ∈ Ω, and divide the index set I as

I+ := {i ∈ I | Hi(x̂) > 0}, and I0 := {i ∈ I | Hi(x̂) = 0}.
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Also, we divide these two index sets as

I0+ := {i ∈ I+ | Gi(x̂) = 0}, I−+ := {i ∈ I+ | Gi(x̂) < 0},

I+0 := {i ∈ I0 | Gi(x̂) > 0}, I00 := {i ∈ I0 | Gi(x̂) = 0},

I−0 := {i ∈ I0 | Gi(x̂) < 0}.

Now, we introduce a new constraint qualification for MMPVC that plays a key rule in this
section.

Definition 2. The MMPVC is said to be satisfy to (CQ) at x̂ if there are not, non-zero together,
scalars αi and βi for i ∈ I, satisfying αi ≥ 0 for i ∈ I00 ∪ I0+, βi ≥ 0 for i ∈ I−0 , αiβi = 0 for
i ∈ I00 , and

0 ∈
∑

i∈I0
0∪I0

+

αi∂Gi(x̂)−
∑
i∈I0

βi∂Hi(x̂).

We should mention that (CQ) is a generalization of a constraint qualification that is de-
fined by Ye [16] for mathematical programming with equilibrium constraints (MPEC), named
“No Nonzero Abnormal Multiplier Constraint Qualification”. This constraint qualification was
extended to nonsmooth MPECs by Movahedian and Nobakhtian [14], and is considered for
MMPVC, for the first time, in the present paper.

Example 1. Let
Ω = {x ∈ R2 | x1 ≥ −x2, x2(x1 + x2) ≤ 0},

and x̂ = 02 ∈ Ω. This set can be considered as feasible set of a MMPVC with following data:

H1(x1, x2) = x1 + x2, and G1(x1, x2) = x2.

Obviously, I0 = {1}, ∂H1(x̂) = {(1, 1)} and ∂G1(x̂) = {(0, 1)}. A short calculation shows that

02 ∈ α1∂G1(x̂)− β1∂H1(x̂), α1 ≥ 0, β1 ≥ 0 =⇒ α1 = β1 = 0,

and so, the CQ holds at x̂.

The following theorem presents the first main result of this section.

Theorem 3. Let x̂ be a properly efficient solution to MMPVC. If (CQ) holds at x̂, then there
exist scalars µF

j , µH
i and µG

i , for j ∈ J and i ∈ I, such that:

0n ∈
p∑

j=1

µF
j ∂fj(x̂) +

m∑
i=1

[
µG
i ∂Gi(x̂)− µH

i ∂Hi(x̂)
]
, (3)

µG
i ≥ 0, i ∈ I00 ∪ I0+; µG

i = 0, i ∈ I+0 ∪ I−0 ∪ I−+ , (4)
µH
i free, i ∈ I00 ∪ I+0 ; µH

i ≥ 0, i ∈ I−0 ; µH
i = 0, i ∈ I+, (5)

µH
i µ

G
i = 0, i ∈ I00 , (6)

(µF
1 , . . . , µ

F
p ) > 0p. (7)
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Proof. Since x̂ is a properly efficient solution to MMPVC, Definition 1 concludes that there
exist some positive scalars µF

j > 0, for j ∈ J , such that x̂ is a minimizer to the following
weighted problem:

min

p∑
j=1

µF
j fj(x) subject to x ∈ Ω.

Therefore,
∑p

j=1 µ
F
j fj + IS attains its global minimum at x̂. Hence,

0n ∈ ∂M

 p∑
j=1

µF
j fj + IΩ

 (x̂) ⊆
p∑

j=1

µF
j ∂Mfj(x̂) + ∂MIΩ(x̂)

=

p∑
j=1

µF
j ∂fj(x̂) +NM (Ω, x̂). (8)

For estimating of NM (Ω, x̂), for all i ∈ I take Θi(x) :=
(
Gi(x),Hi(x)

)
, and let Θ(x) :=(

Θ1(x), . . . ,Θm(x)
)
. Also, set

X∗ := {(v1, v2) ∈ R2 | v2 ≥ 0 and v1v2 ≤ 0},

and X :=
{
(v1, . . . , vm) ∈

(
R2
)m | vi := (v1i , v

2
i ) ∈ X∗, ∀i ∈ I

}
. Since X =

∏m
i=1 X∗, then

NM

(
X ,Θ(x̂)

)
=

m∏
i=1

NM

(
X∗,Θi(x̂)

)
, (9)

by (2). On the other hand, the following equality has been proved in [7, Lemma 3.2]:

NM (X∗,Θi(x̂)) =



X∗ for i ∈ I00
{0} × R for i ∈ I+0
{0} × R− for i ∈ I−0
R+ × {0} for i ∈ I0+
{0} × {0} for i ∈ I−+ .

(10)

Owing to (9)-(10), the (CQ) at x̂ implies that for each ρ =
(
ρG1 , ρ

H
1 , . . . , ρ

G
m, ρ

H
m

)
∈ NM (X ,Θ(x̂))

we have
0n ∈

∑
i∈I

[
ρGi ∂Gi(x̂) + ρHi ∂Hi(x̂)

]
=⇒ ρ = 02m.

Thus,
0n /∈

⋃
02m ̸=ρ∈NM (X ,Θ(x̂))

[∂ (⟨ρ,Θ(x) + y⟩) (x̂, 0m)]x .

From this and Theorem 2 we conclude that the set-valued function Ω̂(.) is calm at (x̂, 0m),
where Ω̂(y) := {x ∈ Rn | Θ(x) + y ∈ X} for each y ∈ R2m. Since Ω̂(0m) = Ω, Theorem 1
deduces that

NM (Ω, x̂) ⊆
⋃

λ∈NM (X ,Θ(x̂))

D∗Θ(x̂)(λ) +NM (Rn, x̂). (11)

On the other hand, by(2), for each λ :=
(
λH1 , λ

G
1 , . . . , λ

H
m, λ

G
m

)
∈ R2m we have
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D∗Θ(x̂)(λ) = ∂M ⟨λ,Θ(.)⟩(x̂) = ∂

[
m∑
i=1

(
λHi Hi + λGi Gi

)]
(x̂)

=
m∑
i=1

[
λHi ∂Hi(x̂) + λGi ∂Gi(x̂)

]
.

According to above equality,(11) and the fact that NM (Rn, x̂) = {0n}, we get tho following
estimate for NM (Ω, x̂):

NM (Ω, x̂) ⊆
⋃

λ∈NM (X ,Θ(x̂))

[
m∑
i=1

(
λHi ∂Hi(x̂) + λGi ∂Gi(x̂)

)]
.

Hence, the last inclusion and (8) imply that

0n ∈
p∑

j=1

µF
j ∂fj(x̂) +

⋃
λ∈NM (X ,Θ(x̂))

[
m∑
i=1

(
λHi ∂Hi(x̂) + λGi ∂Gi(x̂)

)]
.

Therefore, there exists some λ := (λH1 , λ
G
1 , . . . , λ

H
m, λ

G
m) ∈ NM (X ,Θ(x̂)) such that

0 ∈
p∑

j=1

µF
j ∂fj(x̂) +

m∑
i=1

[
λHi ∂Hi(x̂) + λGi ∂Gi(x̂)

]
. (12)

From (10) and λ ∈ NM (X ,Θ(x̂)), we can conclude that λGi ≥ 0 for i ∈ I00 ∪ I0+, λGi = 0 for
i ∈ I+0 ∪ I−0 ∪ I0+, λHi is free for i ∈ I00 ∪ I+0 , λHi ≤ 0 for i ∈ I−0 , λHi = 0 for i ∈ I0+ ∪ I−+ ,
and λHi λ

G
i = 0 for i ∈ I00 . Taking µG

i := λGi for i ∈ I, µH
i := −λHi for i ∈ I00 , µH

i := λHi for
i ∈ I \ I00 , and considering (12), the result is justified.

It is worth mentioning that when p = 1, the relations (3)-(7), named M-stationary condition,
are proved in [7, 8] for the problems with smooth data, and in [14] for nonsmooth MPECs. The
present paper is the first that studies this kind of stationary condition for MMPVCs.

We know from classic nonlinear optimization that necessary optimality conditions are also
to be sufficient under convexity assumption. These results cannot be applied for MMPVC since
the product function HiGi does not convex. The following theorem, which is our second main
result in this section, shows the sufficient condition holds for MMPVCs, under some additional
weak assumptions.

Theorem 4. Let x̂ ∈ Ω be a feasible solution that satisfies in (3)-(7) for some scalars µF
j , µH

i ,
and µG

i , (i, j) ∈ I × J .

(a): If
A := {i ∈ I00 | µH

i < 0} ∪ {i ∈ I00 | µH
i = 0, µG

i > 0} = ∅,

then x̂ is a local properly efficient to MMPVC.

(b): If
B := A ∪ {i ∈ I+0 | µH

i < 0} ∪ {i ∈ I0+ | µH
i = 0, µG

i > 0} = ∅,

then x̂ is a global properly efficient to MMPVC.
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Proof. (a): Suppose that x̂ is not locally properly efficient to MMPVC. Then, for each neigh-
borhood U ⊆ Rn to x̂, and for each vector λ = (λ1, . . . , λp) > 0p, we can find a point
xUλ ∈ Ω ∩ U such that

p∑
j=1

λjfj(x̂) >

p∑
j=1

λjfj(x
U
λ ).

Notice that (7) leads us take λ = µF := (µF
1 , . . . , µ

F
p ) in above inequality. So, the

convexity of
∑p

j=1 µ
F
j fj implies that

〈
ς, xUµ − x̂

〉
≤

p∑
j=1

µF
j fj(x

U
µ )−

p∑
j=1

µF
j fj(x̂) < 0, ∀ς ∈ ∂

 p∑
j=1

µF
j fj

 (x̂).

The last inequality and the fact that ∂
(∑p

j=1 µ
F
j fj

)
(x̂) =

∑p
j=1 µ

F
j ∂fj(x̂) conclude that

p∑
j=1

µF
j

〈
ςj , x

U
µ − x̂

〉
< 0, ∃xUµ ∈ U ∩ Ω, ∀ςj ∈ ∂fj(x̂). (13)

On the other hand, (3) implies that
p∑

j=1

µF
j ξ

F
j +

m∑
i=1

(µG
i ξ

G
i − µH

i ξ
H
i ) = 0, (14)

for some ξFj ∈ ∂fj(x̂), ξ
H
i ∈ ∂Hi(x̂) and ξGi ∈ ∂Gi(x̂), for (i, j) ∈ I × J .

Let i ∈ I+0 . The continuity of Gi concludes that there exists a neighborhood Ui for x̂
such that Gi(x) > 0 for all x ∈ Ui. Thus, Gi(x) > 0, Hi(x) ≥ 0 and Gi(x)Hi(x) ≤ 0,

for all x ∈ Ui ∩ Ω, which imply Hi(x) = 0. Similarly, for each i ∈ I0+ there exists
a neighborhood Ûi for x̂ such that Hi(x) > 0 and Gi(x) ≤ 0. Summarizing, for all
x ∈ Ω ∩ V in which V :=

⋂
i∈I+

0
Ui ∩

⋂
i∈I+

0
Ûi, we have Gi(x) ≤ 0 = Gi(x̂), for i ∈ I0+,

and Hi(x) = 0 ≤ Hi(x̂), for i ∈ I+0 . Hence

⟨ξGi , x− x̂⟩ ≤ 0, ∀i ∈ I0+, and ⟨ξHi , x− x̂⟩ ≤ 0, ∀i ∈ I+0 .

So, owing to (4)-(6), we get

⟨
∑

i∈I0
+∪I+

0

(
µG
i ξ

G
i − µH

i ξ
H
i

)
, x− x̂⟩ ≤ 0, ∀x ∈ Ω ∩ V.

By the above inequality, convexity of functions, assumption that A = ∅, (4)-(6), and a
short calculation, we deduce that

⟨
m∑
i=1

(
µG
i ξ

G
i − µH

i ξ
H
i

)
, x− x̂⟩ ≤ 0, ∀x ∈ Ω ∩ V. (15)

Now, inner-producing two sides of (14) to x− x̂ and regarding (15), we conclude that
p∑

j=1

µF
j

〈
ξFj , x− x̂

〉
≥ 0, ∀x ∈ Ω ∩ V,

which contradicts (13). Thus, the proof is complete.
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(b): Emptiness assumption of B leads us to repeat the proof of (a) without considering any
neighborhood for x̂.

Example 2. Consider the MMPVC with following data:

f1(x1, x2) = x21 + |x2|, f2(x1, x2) = 2x41 + 3|x2|,

H1(x1, x2) = −x2, H2(x1, x2) = |x1|+ x2,

G1(x1, x2) = −1, G2(x1, x2) = −x1.

Taking x̂ = 02, we conclude that I−0 = {1} and I00 = {2}. Since the conditions (3)-(7) hold for
µF
1 = µF

2 = 1, µH
1 = µH

2 = 1
4 and µG

1 = µG
2 = 0, and also B = ∅, Theorem 4 implies that x̂ is

properly sufficient for the problem.

4 Conclusion

In this paper, we considered a new class of nonsmooth multiobjective optimization problems,
denoted by MMPVC, as an extension of the mathematical programs with vanishing constraints
from the scalar case and the multiobjective mathematical programming with equilibrium con-
straints. We introduced a suitable modification of the “No Nonzero Abnormal Multiplier Con-
straint Qualification”. We gave Karush-Kahn-Tucker type necessary optimality condition for
proper efficient solutions, and derived that this necessary condition is also sufficient for proper
efficiency under some additional assumptions in emptiness kind.
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1 Introduction

Conjugate gradient (CG) and quasi-Newton (QN) methods contain a class of unconstrained
optimization algorithms, with some great properties such as low memory requirements and
strong global convergence [34], which make them famous for engineers and mathematicians
engaged in solving large-scale problems, as follows:

min f(x)

x ∈ Rn (1)

where f : Rn → R is a smooth nonlinear function, and its gradient is available. The iterative
formula of a CG method leads to a sequence of the approximate solutions, as {xn} with the
following recursive formula:

xk+1 = xk + sk, sk = αkdk, k = 0, 1, 2, . . . (2)

where x0 ∈ Rn is an initial solution and dk is the search direction with following formula:

d0 = −g0, dk+1 = −gk+1 + βkdk, k = 0, 1, 2, . . . (3)

where gk = ∇f(xk) and βk is a scalar called the CG (update) parameter. In Eqn (2) the
αk parameter is the step length at current iteration along dk. Inexact line searches satisfy
some certain line search conditions [22]. Among them, the so-called Wolfe conditions [22]
have attracted particular attention in the convergence analyses and the implementation of CG
methods, requiring that:

f(xk + αkdk)− f(xk) ≤ δαkg
T
k dk, (4)

g(xk + αkdk)
T dk ≥ σgTk dk (5)

where 0 < δ < σ < 1. These conditions guarantee that sTk yk > 0, where yk = gk+1 − gk, and sk
is defined in (2).

Different choices for the CG parameters lead to different CG methods. In early CG meth-
ods, the conjugate condition is based on the quadratic objective function and the exact line
search, which is dTk gk+1 = 0. These methods lead to the classical linear CG methods such
as Fletcher-Reeves (FR) [23], Hestenes-Stiefel (HS) [21], Polak-Ribie´re-Polyak (PRP)[9, 13]
and Dai-Yuan (DY)[36]. Classic methods have same performance for linear CG methods, al-
though they have different global convergence properties and numerical performance for general
nonlinear objective functions or inexact line search (see [32]).

New nonlinear CG methods are presented with different approaches such as constructing
descent or sufficient descent directions, new extended conjugacy conditions or a hybrid with
QN methods. For example, Zhang et al. [18], construct some descent classic CG directions as
three- terms CG, TTCG, methods. For instance in a special case, they proposed a three-term
HS, TTHS, with the following search direction [18]:

dTTHS
k+1 = −gk+1 + βHS

k dk − θk+1yk, (6)
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where

βHS
k =

gTk+1yk

dTk yk
, θk+1 =

gTk+1dk

dTk yk
(7)

It is also clear that if the exact line search is used, then θk+1 = 0, and the TTHS method
is converted to the classic HS method. By replacing the HS method with other linear CG
methods, some new descent methods, such as TTPR and TTFR can be achieved (see [18]).
An attractive feature of these methods is that the direction has sufficient descent conditions,
i.e. dTk gk = −∥gk∥2 (∥.∥ is the Euclidean norm), which is independent of line search [18]. In
addition, Babaie-Kafaki and Ghanbari [28] apply the idea of TTHS method, Eqns (6)-(7), using
a modified BFGS, proposed by Li and Fukushima [6], and introduce a modified TTCG, named
MTTHS, as follows:

dMTTHS
k+1 = −gk+1 + βMHS

k dk − θMk zk, (8)

where

βMHS
k =

gTk+1zk

dTk zk
, θMk =

gTk+1dk

dTk zk
, (9)

and

zk = gk+1 − gk + c∥gk∥rsk ≜ yk + c∥gk∥rsk, (10)

where r ≥ 0 and c > 0 are some constants, in Eqn (10), zk plays a vital role in the global
convergence of the MBFGS method for nonconvex function [17]. Similarly, Sugiki et al. [15]
proposed another modified TTCG method, using a TTCG method, proposed by Narushima et
al. [37] and a general form of the modified secant conditions, which generate a search direction
with sufficient descent conditions.

At first time, Perry [3] to find more efficient CG methods, incorporated the standard secant
equation to conjugacy condition and proposed his method to approximate the directions of CG
to QN direction, as in the following:

dPk+1 = −gk+1 + βP
k dk = −QP

k+1gk+1, (11)

where QP
k+1 is the direction matrix, as a nonsymmetric matrix which approximates the inverse

Hessian of the objective function at current iteration, and βP
k is the Perry CG parameter, which

are defined as follows:

βP
k =

gTk+1yk

dTk yk
−
gTk+1sk

dTk yk
, QP

k+1 = I − sky
T
k

yTk sk
+
sks

T
k

yTk sk
(12)

As mentioned, from Wolfe conditions in means (4)-(5), we have sTk yk > 0, so the matrix in (12)
is well-defined. In Perry approach, the direction matrix, QP

k+1, is not symmetric and also does
not satisfy the secant equations [5]. To overcome these defects, Shanno [5] combined the Perry
method and memoryless BFGS method to introduce a new CG direction as follows:

dSk+1 = −QS
k+1gk+1 = −(I − sky

T
k + yks

T
k

sTk yk
+ (1 +

yTk yk
sTk yk

)
sks

T
k

sTk yk
)gk+1 (13)
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In 2001, Dai, and Liao [35] extended the Perry conjugate condition and introduced the new
nonlinear CG method as follows:

dDL
k+1 = −gk+1 + βDL

k dk = −QDL
k+1gk+1, (14)

where

βDL
k =

gTk+1yk

dTk yk
− t

gTk+1sk

dTk yk
, QDL

k+1 = I +
sTk yk
sTk yk

− t
sTk sk
sTk yk

, (15)

where t is a nonnegative DL parameter. Note that if t =0, then βDL
k reduces βHS

k , Eqn(7), if
t = 1, then βDL

k reduces to βP
k , Eqn(12).

For extending the global convergence properties of general objective functions, Dai, and
Liao [35] considered a truncated form of the DL method, with an extended DL parameter,
namely βDL+

k , and the following direction:

dDL+
k+1 = −gk+1 + βDL+

k dk = −gk+1 +

(
max{

gTk+1yk

dTk yk
, 0} − t

gTk+1sk

dTk sk

)
dk (16)

As a famous descent CG method, independent from a type of line search, Hager and Zhang
(HZ) [31] introduced the following CG parameter:

βHZ
k =

gTk+1yk

dTk yk
− 2

∥yk∥2

dTk yk

gTk+1dk

dTk yk
(17)

HZ method is an adaptive version of the DL parameter corresponding to t = 2∥yk∥2

sTk yk
in Eqn

(15). Another adaptive DL parameter is based on scaled memoryless BFGS, suggested by Dai
and Kou (DK) [33], as follows:

βDK
k (τk) =

gTk+1yk

dTk yk
− (τk +

∥yk∥2

sTk yk
− sTk yk

∥sk∥2
)
gTk+1sk

dTk yk
(18)

In which τk is a parameter corresponding to the scaling factor in the scaled memoryless BFGS
method.

Although the setting of the DL parameter is an open problem in CG methods [2], many
efforts have been made by researchers to adjust it. As instance, in descent approach based on
an eigenvalue study, the authors in [25] proposed a descent class of DL method, namely, DDL.
An exciting feature of the proposed class is that the HZ and DK methods are individual cases
of it, as efficient nonlinear CG methods. The DDL search direction is as follows [25]:

dDDL
k+1 = −gk+1 + βp,q

k dk = −(I +
dTk yk
dTk yk

− tp,qk

dTk sk
dTk yk

)gk+1, (19)

where tp,qk is DL parameter as follows:

tp,qk = p
∥yk∥2

sTk yk
− q

sTk yk
∥sk∥2

, (20)

where p and q are nonnegative constants, which p < 1
4 and q ≥ 1

4 . For more information about
setting the DL parameter, see [16, 24, 27, 29, 38].



63S. Nezhadhosein, S. Mohammadkhan Sartip/ COAM, 3(2), Autumn-Winter 2018

Another conjugacy approach in CG methods is based on the different types of modified
secant equations instead of standard secant equation in DL method. To review the different
types of modified secant equations see the Introduction section of [25].

Here, motivated by DL+ approach, similar to [17, 13, 10, 11], we apply the modified secant
equation proposed by Li et al. [10], named MSL, for a new extended conjugacy condition
and then using two approaches, similar to DL+, we adjust its parameter. Therefore, the
advantages of the new proposed nonlinear CG method are using the second-order information
of the objective function, by a modified secant equation, and setting the DL+ parameter to
improve in the search directions, simultaneously.

The remainder of this paper is organized as follows. In Section 2, we introduce a new
extended conjugacy condition based on MSL [10]. Then we discuss two approaches to setting
the parameter. In the first approach, we use the MTTHS descent method (8)-(9). In second
approach, we try to match the direction matrix of the CG method to the Shanno quasi-Newton
direction matrix, QS

k+1, Eqn (13). Then, we discuss their global convergence. In Section 3, we
numerically compare our methods with the DL, HZ, and DK methods and report comparative
testing results. Finally, we make conclusions in Section 4.

2 New Nonlinear Conjugate Gradient Methods

In this section, based on MSL [10], we first introduce a new extended, modified conjugate
condition for CG methods, and then we describe two methods for calculating the parameter.

2.1 Conjugacy condition based on MSL

Using modifies secant equations are common in CG and QN methods for solving unconstrained
optimization problems. For example Zhang et al. [13] and Zhang and Xu [14] proposed new
QN methods based on a modified secant equation. Moreover, Yube, and Takano [11] applied
this equation for a nonlinear CG with global convergence properties. New versions of this
modified secant equation can be seen in [26, 20, 12]. Zhang and Zhou [17] applied a modified
BFGS method for a nonlinear CG method, which is proposed by Li and Fukushima [6]. Li
et al. [10] used with the modified secant equation in [39, 40]. Suugiki et al. [15], unify the
above-modified secant equations as a general form and proposed a TTCG method with sufficient
descent property.

As special case, here, we apply the conjugacy condition proposed by Li et al. [10], which
further studied by [39, 40]. This condition is based on the modified secant equation, MSL, as
follows [10]:

Bk+1sk = yk, yk = yk +Akuk, (21)

where Bk+1 is an approximation of the Hessian matrix of the objective function, uk ∈ Rn is a
vector that satisfies sTk uk ̸= 0 and Ak = θ̄k

sTk uk
where θ̄k = max{θk, 0} and θk is as follows:
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θk = 2(fk − fk+1) + (gk + gk+1)
T sk (22)

The modified secant equation in Eqn (21), is based on a revised form of the modified secant
equation proposed in [39, 40]. According to (3), similar to DL conjugate condition [35], the new
extended conjugacy condition based on (21) is presented as follows:

dTk+1yk = −tDL+gTk+1sk, (23)

which is named DL+ conjugate condition. Using CG direction in (3) and (23), we have the
following CG parameter:

βDL+
k =

gTk+1yk
dTk yk

− tDL+ g
T
k+1sk

dTk yk
(24)

For tDL+ = 0, the DL+ method is converted to the MHS method in Eqn (9). By replacing the
(24) in (3) and rearranging the vectors, we have the following new search direction:

dDL+
k+1 = −QDL+

k+1 gk+1 = −(I +
sTk yk
sTk yk

− tDL+ s
T
k sk
sTk yk

)gk+1 (25)

Then the associate CG method is called DL+ and its parameter, tDL+, is called DL+ (update)
parameter.
Now similar toDL+ parameter, the setting of theDL+ parameter is an vital issue. In following,
we use two approaches to set it.

2.2 Setting DL+ parameter

To set theDL+ parameter, we apply two approaches. The first is based on the descent direction,
and the second is based on the QN approach.

2.2.1 Descent approach

In linear search methods, the descent direction is vital to convergence analysis. Since the DL+
direction may not satisfy the descent condition, similar to [25] for DL method, here we try to
satisfy the descent condition of DL+ method using the MTTHS direction in (8)-(9), [28]. For
this purpose, consider the following subproblem:

min ∥dDL+
k+1 − dMTTHS

k+1 ∥ (26)

Using simple algebraic calculations, we get the DL+ parameter as following:

tDL+∗
k1

=
1

a2
(a1 − a3 +

a4
∥dk∥2

dTk zk), (27)

where
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a1 =
gTk+1yk
dTk yk

, a2 =
gTk+1sk

dTk yk

a3 =
gTk+1zk

dTk zk
, a4 =

gTk+1dk

dTk zk
,

where zk and yk are defined in Eqns (10) and (21), respectively. After some simplification, the
Eqn(27) can be written as follows:

tDL+∗
k1

= −y
T
k gk+1

sTk gk+1
(28)

However, the parameter tDL+∗
k1

should be nonnegative. So, we use the following modified form
of this parameter given:

tDL+∗
k1

= max{tDL+∗
k1

, 0} (29)

So, by replacing (29) in (14), we get a new nonlinear DL direction as following:

dNDL−1
k+1 = −gk+1 + (

gTk+1yk

dTk yk
− tDL+∗

k1

gTk+1sk

dTk yk
)dk, (30)

where tDL+∗
k1

is defined in Eqn (29). The CG method based on the search direction dNDL−1
k+1 ,

called ”NDL-1” method.

2.2.2 QN approach

Since QN methods apply the second derivative information in search directions, so they are
useful in solving large scale unconstrained optimization problems. Therefore, to access the CG
direction matrices to approximate the inverse Hessian matrix, similar to [3] in the QN method,
we enhance the efficiency of CG method. For this reason, we approach the matrix direction
of the DL+ method, QDL+

k+1 , to the Shanno quasi-Newton direction matrix, QS
k+1, Eqn (13).

Therefore, Consider the following subproblem:

tDL+∗
k2

= argmin∥QDL+
k+1 −QS

k+1∥F , (31)

where ∥.∥F is Frobenius norm. Using the property tr(AAT ) = ∥A∥2F and after some algebraic
calculations, we have

tDL+∗
k2

= 1 +
yTk yk
sTk yk

− sTk yk
∥sk∥2

(32)

Now, similar to (29), we propose the following DL parameter:

tDL+∗
k2

= {tDL+∗
k2

, 0} (33)

So, by replacing (33) in (14), we get another new DL+ direction as following:

dNDL−2
k+1 = −gk+1 + (

gTk+1yk
dTk yk

− tDL+∗
k2

gTk+1sk

dTk yk
)dk, (34)



Two Settings of the Dai-Liao Parameter .../ COAM, 3(2), Autumn-Winter 201866

where tDL+∗
k2

is defined in Eqn (33). The CG method based on dNDL−2
k+1 , called ”NDL-2” method.

Now, we discuss the global convergence of the ”NDL-1” and ”NDL-2” methods. So, we need
to make the following underlying assumptions on the objective function, commonly used in the
convergence analysis of the CG methods [34].
Assumption (A):
Let the objective function f is strongly convex and ∇f is Lipschitz continuous on the level set

S = {x ∈ Rn : f(x) ≤ f(x0)} (35)

That is there exists constants µ > 0 and L such that

(∇f(x)−∇f(y))T (x− y) ≥ µ∥x− y∥2, ∀x, y ∈ S (36)

and

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ S (37)

From Eqns (36)-(37), there exists a positive constant Γ such that for all x ∈ S ; ∥∇f(x)∥ ≤ Γ.

Lemma 1. [30] Let the Assumption (A) holds. Consider any CG method in the form of (2)-(3)
in which for all k ≥ 0, the search direction dk is a descent direction, and the step length αk is
determined to satisfy the Wolfe conditions, (4)-(5). If∑

k≥0

1

∥dk∥2
= ∞ (38)

then the method converges in the sense that

lim inf
k→∞

∥gk∥ = 0 (39)

Theorem 1. Let the Assumption (A) holds for the objective function f in (1). Consider a
CG method in the form of (2)-(3) with the CG direction defined by (30), ”NDL-1” method, in
which the step length αk is computed such that the Wolfe conditions (4)-(5) are satisfied. If
the objective function f is uniformly convex on S, then the method converges in the sense that
(39) holds.

Proof. For any uniform convex differentiable function f , there exists a positive constant µ such
that (see Theorem 1.3.16 of [30])

yTk sk ≥ µ∥sk∥2 (40)

Also similar inequality can be proved by replacing yk with yk. For this purpose we have

yTk sk = (yk +
θ̄k
sTk uk

uk)
T sk = sTk yk +max{θk, 0} ≥ sTk yk ≥ µ∥sk∥2 (41)

Note that, from the second equation of the Wolf conditions, Eqn (4), we have:

gTk+1dk ≥ σgTk dk (42)
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On the other hand, from (21) we have:

∥ykk∥ ≤ ∥yk∥+ ∥Akuk∥ = ∥yk∥+ ∥wk∥ (43)

where wk = Akuk and Ak is defined in (21). Now we show that ∥yk∥ ≤ L1∥sk∥. For this
purpose, first of all, using Taylor expansion of θk in Eqn (22), we have:

|θk| < M∥sk∥2 (44)

Then, considering the Eqn(21), we have two cases for wk, [10]: wk = θksk
∥sk∥2 or wk = θkyk

sTk yk
, which

θk is defined in (21). In the first case, from Eqns (37), (43) and (44),we get:

∥yk∥ ≤ ∥yk∥+
|θk|∥sk∥
∥sk∥2

= (L+M)∥sk∥ =M1∥sk∥, (45)

where M1 = L+M . In the second case, from (37), (40) and (44) we have:

∥yk∥ ≤ ∥yk∥+
ML∥sk∥3

µ∥sk∥2
≤ L(1 +

M

µ
)∥sk∥ =M2∥sk∥, (46)

where M2 = L(1 + M
µ ). Now, let L1 = max {M1,M2}, then we have:

∥yk∥ ≤ L1∥sk∥ (47)

Next we can show that ∥zk∥ ≤ L2∥sk∥, where zk is defined in (10). From the eqns (10) and
(37), we have:

∥zk∥ = ∥yk + c∥gk∥rsk∥ ≤ ∥yk∥+ c∥gk∥r∥sk∥ ≤ L∥sk∥+ c∥gk∥r∥sk∥

≤ (L+ cΓr)∥Sk∥ = L2∥sk∥, (48)

where L2 = L+ cΓr. Moreover, from (40) and (10) we have:

sTk zk = sTk (yk + c∥gk∥rsk) = sTk yk + c∥gk∥r∥sk∥2

≥ (µ+ c∥gk∥r)∥sk∥2 ≥ µ∥sk∥2, (49)

which implies that sTk zk ≥ µ∥sk∥2. Hence from this inequality and Eqns (41), (47), (48), (49),
(5) and Cauchy-Shwartz inequality we have:

|tDL∗
k1

| = dTk yk
gTk+1sk

(
gTk+1yk
dTk yk

+
gTk+1zk

sTk zk
+
gTk+1dk

∥dk∥2

)

≤ ∥sk∥∥yk∥
σ∥gk+1∥∥sk∥

(
∥gk+1∥∥yk∥
µ∥sk∥2

+
∥gk+1∥∥zk∥
µ∥sk∥2

+
∥gk+1∥∥sk∥

∥sk∥2

)
≤ L1

σ

(
L1

µ
+
L2

µ
+ 1

)
(50)

That is tDL+∗
k1

is bounded for uniformly convex objective function. So, if we use the Wolfe
conditions, (4)-(5), similar to Theorem (2.1) in [25], the search directions are bounded away,
which with Lemma 1 complete the proof.
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Theorem 2. Let Assumption (A) holds for the objective function f in (1). Consider a CG
method in the form of (2)-(3) with the CG direction defined by (34), ”NDL-2” method, in
which the step length αk is computed such that the Wolfe conditions (4) and (5) are satisfied.
If the objective function f is uniformly convex on S, then the method converges in the sense
that (39) holds.

Proof. Considering the Assumption (A) and the assumptions of Theorem 1, from eqns (36),
(41), (45), (47) and definition of tDL+∗

k2
, Eqn (33), we have:

|tDL+∗
k2

| = |1 + yTk yk
sTk yk

− sTk yk
∥sk∥2

| ≤ 1 +
∥yk∥2

|sTk yk|
+

|sTk yk|
∥sk∥2

≤ 1 +
L2
1∥sk∥2

∥sk∥2
+

∥sk∥∥yk∥
∥sk∥2

= 1 + L1 +
L2
1

µ
(51)

So, similar to Theorem 1, the search directions are bounded away, and the proof is complete.

In order to ensure the global convergence of the proposed CG methods, ”NDL-1” and ”NDL-
2” methods, for general functions, we modify the CG parameter in Eqn (24), similar to [35, ?],
as follows:

βk
DL+
i = max{

gTk+1yk
dTk yk

, 0} − tDL+∗
ki

gTk+1sk

dTk yk
, i = 1, 2 (52)

where tDL+∗
ki

, i = 1, 2 is defined in (29) and (33), respectively. Theorem 3.6 of [35] ensures the
global convergence of the methods, which are named DL+, for general functions, if the search
directions satisfy the sufficient descent condition.

3 Numerical Experiments

In this section, we present some numerical experiments, obtained by applying a MATLAB
8.8.0.1 (R2013a) implementation of the proposed nonlinear CG methods, ”NDL-1” and ”NDL-
2”. The numerical results are compared with the DL+ [35] with parameter t = 0.1 and DK [33]
with parameter τk = ∥yk∥2

sTk yk
. We perform the implementations on a computer, Intel(R) Core

(TM) A10-8700P CPU 3.20 Gigahertz 64-bit desktop with 8 Gigabyte RAM. Our experiments
have been done on a set of test problems of unconstrained optimization problems of CUTEr
collection [1]. Although the descent property may not always hold for the proposed method, the
upward search direction seldom occurred in our experiments; when encountering, we restarted
the algorithm with Powell Restart [30], which is |gTk gk+1| < 0.2∥gk+1∥.

Moreover, we used the active approximate Wolfe conditions described in (4)-(5) with pa-
rameters σ = 0.9 and ρ = 10−4. The same stop condition is considered for all methods, which
are ∥gk∥∞ ≤ 10−6 and the maximum number of iterations is limited to 1000. Table 1, shows
our comparing data contains the test problems, dimensions (n), the total number of function
evaluations (fn) and the total number of gradient evaluations (gn), respectively.
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Figure 1: Performance profiles based on the number of iterations for ”NDL-1”, ”NDL-2”, DL+ and
DK methods.
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Figure 2: Performance profiles based on CPU time for ”NDL-1”, ”NDL-2”, DL+ and DK methods.
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Figure 3: Performance profiles based on nf + 3ng for ”NDL-1”, ”NDL-2”, DL+ and DK methods.

For more comparison on our numerical results, we apply the performance profile introduced
by Dolan and More´ [8].

Table 1: Experiments results of the proposed methods about the total function evaluations (fn) and
gradient evaluations (gn)

DL+ DK NDL− 1 NDL− 2

Problem n fn \ gn fn \ gn fn \ gn fn \ gn
AKIV A 2 2 \ 2 2 \ 2 2 \ 2 2 \ 2
ALLINITU 4 451 \ 313 626 \ 408 622 \ 404 421 \ 326
ARGLINA 200 17 \ 17 18 \ 18 7 \ 7 11 \ 11
ARGLINB 200 45267 \ 2003 33853 \ 766 33853 \ 766 41262 \ 1258
ARGLINC 200 76960 \ 3407 153903 \ 3479 153903 \ 3479 35670 \ 1081
ARWHEAD 5000 8136 \ 1077 36169 \ 3122 71908 \ 6014 668 \ 7225 \ 669
BARD 3 6018 \ 2672 23350 \ 8756 22325 \ 8326 4163 \ 1749
BDQRTIC 5000 19057 \ 1820 142535 \ 10001 143643 \ 10001 22755 \ 1717
BEALE 2 3490 \ 1413 2753 \ 949 2719 \ 946 990 \ 421
BIGGS6 6 4271 \ 3784 1670 \ 1319 7928 \ 7719 530 \ 429
BOX 10000 11453 \ 1123 115065 \ 10001 119587 \ 10001 6361 \ 587
BOX3 3 60 \ 59 29 \ 28 54 \ 53 1016 \ 998
BRKMCC 2 455 \ 179 3087 \ 965 3103 \ 970 1496 \ 599
BROWNAL 200 85271 \ 10001 122892 \ 8870 139672 \ 10001 24583 \ 1892
BROWNDEN 4 23116 \ 1816 70244 \ 5015 29466 \ 2129 16501 \ 1286

Continued on next page
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Table 1 – Continued from previous page
DL+ DK NDL− 1 NDL− 2

Problem n fn \ gn fn \ gn fn \ gn fn \ gn
BROYDN7D 5000 34827 \ 7796 49687 \ 10001 48910 \ 10001 26146 \ 6441
BRY BND 5000 4336 \ 1063 1845 \ 495 1779 \ 511 2659 \ 702
CHAINWOO 4000 21411 \ 2385 54444 \ 6153 91905 \ 10001 16734 \ 1961
CHNROSNB4 50 13102 \ 1757 67274 \ 8503 66035 \ 8374 10379 \ 1464
CHNRSNBM 50 15446 \ 20934 54485 \ 7030 47455 \ 6218 10953 \ 1571
CLIFF 2 32270 \ 10001 10037 \ 10001 13987 \ 10001 37944 \ 10001
CUBE 2 3891 \ 739 81088 \ 100014 81353 \ 10001 2893 \ 575
CURLY 10 10000 104174 \ 10001 108942 \ 10001 108925 \ 10001 100641 \ 10001
CURLY 20 10000 122180 \ 10001 127249 \ 10001 127199 \ 10001 121138 \ 10001
CURLY 30 10000 132988 \ 100014 138686 \ 10001 138608 \ 10001 130225 \ 10001
DECONV U 63 18656 \ 5170 6881 \ 1898 8575 \ 2421 11110 \ 3554
DENSCHNA 2 25 \ 25 33 \ 33 26 \ 26 27 \ 27
DENSCHNB 2 16 \ 16 17 \ 17 10 \ 10 12 \ 12
DENSCHNC 2 1642 \ 651 2146 \ 1417 3643 \ 1164 867 \ 439
DENSCHND 3 2354 \ 283 741 \ 96 100410 \ 3841 3038 \ 288
DENSCHNE 3 21 \ 18 21 \ 18 12 \ 9 16 \ 13
DENSCHNF 2 6528 \ 1158 2136 \ 375 12319 \ 2203 5669 \ 1006
DIXMAANC 3000 20 \ 184 19 \ 17 14 \ 12 15 \ 13
DIXMAANA 3000 17 \ 16 18 \ 17 11 \ 10 13 \ 12
DIXMAANB 3000 19 \ 18 18 \ 17 11 \ 10 14 \ 13
DIXMAANC 3000 20 \ 18 19 \ 17 14 \ 12 15 \ 13
DIXMAAND 3000 609 \ 76 21 \ 17 16 \ 12 3717 \ 289
DIXMAANE 3000 279 \ 278 1313 \ 1312 1093 \ 1092 143 \ 142
DIXMAANF 3000 760 \ 759 625 \ 624 393 \ 392 496 \ 495
DIXMAANG 3000 219 \ 217 425 \ 423 276 \ 274 794 \ 792
DIXMAANH 3000 9281 \ 863 13364 \ 1332 157256 \ 10001 5123 \ 553
DIXMAANI 3000 302 \ 287 117 \ 116 75 \ 74 546 \ 156
DIXMAANJ 3000 1191 \ 1188 580 \ 579 367 \ 366 630 \ 629
DIXMAANK 3000 322 \ 320 414 \ 412 254 \ 252 626 \ 624
DIXMAANL 3000 107360 \ 10001 6648 \ 616 136154 \ 10001 147794 \ 10001
DIXMAANM 15 231 \ 231 172 \ 172 810 \ 810 199 \ 199
DIXMAANN 15 207 \ 206 1299 \ 1298 754 \ 753 174 \ 173
DIXMAANO 15 203 \ 201 1309 \ 1307 747 \ 745 171 \ 169
DIXMAANP 15 194 \ 191 1309 \ 1306 742 \ 739 176 \ 173
DIXON3DQ 10000 208 \ 208 286 \ 281 1218 \ 1218 1003 \ 1003
DJTL 2 13213 \ 606 36052 \ 1461 30600 \ 1246 11650 \ 532
DQDRTIC 5000 11776 \ 2069 27788 \ 4556 27788 \ 4556 8663 \ 1591
DQRTIC 5000 13757 \ 843 8647 \ 693 5849 \ 398 14899 \ 993
EDENSCH 2000 3449 \ 797 3215 \ 1299 3762 \ 1361 3509 \ 1182

Continued on next page
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Table 1 – Continued from previous page
DL+ DK NDL− 1 NDL− 2

Problem n fn \ gn fn \ gn fn \ gn fn \ gn
EG2 1000 1592 \ 358 8142 \ 866 6019 \ 799 1891 \ 363
ENGV AL1 5000 2434 \ 1092 1308 \ 574 641 \ 241 1535 \ 677
ENGV AL2 3 9163 \ 1069 104609 \ 10001 104593 \ 10001 6510 \ 807
ERRINROS 50 83940 \ 10001 71123 \ 10001 70231 \ 10001 74704 \ 10001
ERRINRSM 50 81101 \ 10001 82952 \ 10001 77688 \ 10001 83878 \ 10001
EXPFIT 2 4474 \ 1021 10474 \ 1730 11086 \ 1838 2818 \ 633
EXTROSNB 1000 76398 \ 10001 19469 \ 2277 49393 \ 5073 71250 \ 10001
FLETBV 3M 5000 1062 \ 1062 328 \ 328 1149 \ 1149 136 \ 136
FLETCBV 3 5000 10001 \ 10001 10041 \ 10001 10001 \ 10001 10017 \ 10001
FLETCHBV 5000 10001 \ 10001 10004 \ 10001 10001 \ 10001 10001 \ 10001
FLETCHCR 1000 74350 \ 9375 83444 \ 10001 83284 \ 10001 75752 \ 10001
FMINSRF2 5625 620 \ 620 402 \ 402 3670 \ 3670 399 \ 399
FMINSURF 5625 622 \ 622 485 \ 485 3678 \ 3678 443 \ 443
FREUROTH 5000 16915 \ 1829 77020 \ 9110 97310 \ 10001 11725 \ 1307
GENHUMPS 5000 70178 \ 10001 73098 \ 10001 71091 \ 10001 67735 \ 10001
GENROSE 500 26425 \ 3337 84050 \ 10001 83962 \ 10001 32775 \ 4311
GULF 3 36993 \ 10001 57851 \ 10001 59339 \ 10001 55008 \ 10001
HAIRY 2 12791 \ 1469 8686 \ 971 9463 \ 1074 10611 \ 1287
HATFLDD 3 15526 \ 10001 14806 \ 10001 11764 \ 7673 23089 \ 10001
HATFLDE 3 130 \ 124 1469 \ 819 1800 \ 1206 33097 \ 10001
HATFLDFL 3 769 \ 290 1460 \ 487 1370 \ 457 716 \ 180
HEART6LS 6 133006 \ 9038 113591 \ 10001 118906 \ 10001 114234 \ 7332
HEART8LS 8 10175 \ 1443 84531 \ 10001 82921 \ 10001 12482 \ 1764
HELIX 3 8600 \ 1268 14178 \ 2131 11806 \ 1781 7906 \ 1207
HIELOW 3 2 \ 2 2 \ 2 2 \ 2 2 \ 2
HILBERTA 2 159 \ 159 315 \ 315 181 \ 181 67 \ 67
HILBERTB 10 126 \ 110 291 \ 249 291 \ 249 289 \ 263
HIMMELBB 2 41 \ 27 107 \ 93 74 \ 60 32 \ 18
JENSMP 2 70 \ 10 117 \ 13 13111 \ 857 4212 \ 497
KOWOSB 4 81 \ 81 99 \ 80 141 \ 141 27 \ 25
LIARWHD 5000 4561 \ 573 126596 \ 10001 129301 \ 10001 31873 \ 2659
LOGHAIRY 2 331 \ 331 1748 \ 1748 10001 \ 10001 10001 \ 10001
MANCINO 100 35018 \ 1796 196345 \ 10001 196351 \ 10001 35270 \ 1811
MARATOSB 2 4201 \ 375 11849 \ 579 12329 \ 602 9751 \ 807
MEXHAT 2 18659 \ 1080 62163 \ 2941 77494 \ 3640 12668 \ 738
NONCVXU2 5000 18932 \ 10001 27496 \ 10001 27503 \ 10001 15803 \ 10001
NONCVXUN 5000 20774 \ 10001 32200 \ 10001 32296 \ 10001 19306 \ 10001
NONDQUAR 5000 1341 \ 309 1556 \ 692 2318 \ 1049 1556 \ 378
OSBORNEA 5 408 \ 45 135339 \ 10001 133752 \ 10001 24 \ 4

Continued on next page
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Table 1 – Continued from previous page
DL+ DK NDL− 1 NDL− 2

Problem n fn \ gn fn \ gn fn \ gn fn \ gn
PALMER1C 8 209967 \ 10001 259169 \ 10001 259585 \ 10001 240573 \ 10001
PALMER2C 8 173444 \ 10001 223136 \ 10001 223115 \ 10001 202956 \ 10001
PALMER3C 8 156749 \ 10001 205456 \ 10001 205364 \ 10001 185655 \ 10001
PALMER4C 8 156752 \ 10001 205456 \ 10001 205364 \ 10001 185582 \ 10001
PALMER5C 6 2687 \ 1250 1079 \ 450 1091 \ 455 1656 \ 859
PALMER6C 8 126013 \ 10001 169991 \ 10001 170001 \ 10001 152097 \ 10001
PALMER8C 8 128521 \ 10001 173751 \ 10001 173697 \ 10001 154526 \ 10001
HIMMELBG 2 10 \ 10 13 \ 7 7 \ 7 17 \ 12
HIMMELBH 2 16 \ 16 16 \ 16 11 \ 11 23 \ 23
POWELLSG 5000 4253 \ 1084 39270 \ 7596 34586 \ 6692 3560 \ 870
POWER 10000 35680 \ 1839 71636 \ 7038 104337 \ 10001 30141 \ 1621
QUARTC 5000 13757 \ 843 8647 \ 693 5849 \ 398 14899 \ 993
ROSENBR 2 4068 \ 875 83000 \ 10001 83733 \ 10001 2244 \ 491

Figure 1, to the number of iteration, and Figure 2, to the running time, shows that the
”NDL-2” method slightly outperforms the ”NDL-1”, DL+ and the DK methods. In addition,
Figure 3 shows that to the nf+3ng, the ”NDL-2” method is competitive with the DL+ method.

4 Conclusion

Here, using DL approach, we provide a new conjugacy condition by a modified secant equation
proposed in [10]. To set the parameter of the new conjugacy condition, DL+ parameter, two
approaches are used. The convergence analysis is presented for uniformly convex and general
nonlinear functions. The comparison of the new nonlinear CG methods with some well-known
methods, shows that ”NDL-2” method is better in the iteration criteria and in CPU time,
although to the nf + 3ng is comparative with DL+ method.
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1 Introduction

Data envelopment analysis (DEA), initially developed by [3], is a non-parametric technique for
evaluating the relative efficiencies of homogeneous decision-making units (DMUs) in terms of
multiple inputs and multiple outputs. The basic DEA models and their numerous theoretical
and methodological extensions have been reported in [6]. Unlike the black box model, the
Network Data Envelopment Analysis (NDEA) model considers all internal processes in perfor-
mance evaluation. For example, many companies are composed of several sections that have
linked activities such as Figure 1. In this example, the company has 3 sections. Each section
uses its input resources to generate its output. In either case, there are links or intermediate
products that are shown by the link 1 −→ 2 and 1 −→ 3, and the link 2 −→ 3. The link 1 −→ 2

shows that part of the outputs of section 1 are used as inputs in section 2. In the current
DEA models, each activity must belong to an input or output, and not both, so these models
cannot be formulated with intermediate products. For the first time in the year 2000, Fare and

Figure 1: A company with three linked activities

Grosskopf [7] provided network data envelopment analysis models. Their models were expanded
by several authors. Sexton and Lewis presented a multi-stage network data envelopment anal-
ysis model in 2004 as an extension of the Lewis and Sexton two-step data envelopment analysis
model [9]. This article solves a dea model independently for each NODE. Tone and Tsutsui [16]
presented a network-based data envelopment analysis model in 2009 based on the SBM model.
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The Revenue Efficiency Model (RE) seeks to find a unit that receives the highest revenue from
inputs equal to the inputs of the unit under consideration, from the sales of non-less than the
outputs of the unit under evaluation. Revenue Efficiency is defined as the ratio of observed
revenue to the maximum possible revenue. Given the fact that in the real world we are dealing
with network data envelopment analysis, it is important for managers to evaluate the revenue
efficiency in NDEA. In 2013, Bani Hashemi and Tohidi [2] presented a model for assessing the
revenue efficiency of network data envelopment analysis models.

Classical DEA models assume that all data is crisp. However, crisp data is not always
available because the nature of data can be vague and unclear. In this case, one of the important
methods for dealing with inaccurate data is to consider fuzzy data. Only in [12] and [13] the
fuzzy revenue efficiency (FRE) with input- outputs fuzzy and fuzzy input prices is discussed.
Aghayi [1] is examined revenue efficiency measurement with undesirable data in fuzzy DEA
and also Kordrostami and Jahani Sayyad Noveiri [8] are studied fuzzy revenue efficiency in
sustainable supply chains.

However, in none of these studies, the measurement of fuzzy revenue efficiency has not
been mentioned in Full Fuzzy Network Data Envelopment Analysis (FFNDEA). In this paper,
we examine full-fuzzy models of network data envelopment analysis (fuzzy input-outputs and
fuzzy input prices) to evaluate fuzzy revenue efficiency. Here, the method of ranking functions
is used. Therefore, the ranking functions transform the full fuzzy model of network revenue
efficiency into a crisp linear programming problem for measuring the fuzzy network revenue
efficiency. The rest of the article will be as follows. In section 2, we refer to fuzzy clauses. In
the next section, the problem of fuzzy linear programming and its transformation into a crisp
problem is studied. section 4 addresses the measurement of revenue efficiency in the DEA, and
in Sections 5 and 6 is examined network data envelopment analysis based on SBM model and
revenue efficiency in it. Section 7,the proposed method for measuring fuzzy revenue efficiency
in FFNDEA is presented and, based on the proposed method, a numerical example is solved in
the last section.
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2 Fuzzy Premises

2.1 Basic Definitions of Fuzzy

In this section, the basic definitions and the symbols of the fuzzy sets [17, 18], fuzzy Numbers
[4], Ranking function [10], and the FFLP concept used in this article.

Definition 1. [17] A fuzzy set Ã is defined in the reference setX with Ã =
{
(x, µÃ(x)) : x ∈ X

}
where µÃ : X −→ [0, 1] is the membership function and µÃ(x) is the degree of x in A.

Definition 2. [18] Regarding X as the reference set, then fuzzy set A will be convex if and
only if for every x1, x2 ∈ X:

µÃ

(
λx1 + (1− λ)x2

)
≥ min

(
µÃ(x1), µÃ(x2)

)
∀λ ∈ [0, 1]

Definition 3. [18] Assuming that X is the reference set, then the fuzzy set A is called normal
provided that there exist x ∈ X so that µÃ(x) = 1.

Definition 4. [18] A fuzzy number Ã is a convex normalized fuzzy set Ã of the real line R
such that

1. it exists exactly one x0 ∈ R µÃ(x0) = 1 (x0 is called the mean value of Ã).

2. µÃ(x) is piecewise continuous.

Definition 5. [18] A triangular fuzzy number (TFN), Ã = (al, am, au) is a fuzzy number with
the given membership function µÃ

µÃ(x) =


(x− al)/(am − al) al < x ≤ am

(x− au)/(am − au) am ≤ x < au

0 otherwise.

Definition 6. A triangular fuzzy number Ã = (al, am, au) is called a nonnegative number if
and only if a al ≥ 0, am − al ≥ 0, au − am ≥ 0 and it is a positive number if and only if
al > 0, am − al ≥ 0, au − am ≥ 0.

Definition 7. The support of a fuzzy set Ã, S(Ã) is the crisp set of all x ∈ X such that .
µÃ(x) > 0. The (crisp) set of elements that belong to the fuzzy set Ã at least to the degree α
is called the α-cut set: Aα = {x ∈ X|µÃ(x) ≥ α}

Definition 8. [10] Suppose F a set of all triangular fuzzy numbers. If Ã ∈ F, [A1
α, A

u
α], α ∈ [0, 1]

the α- cut is Ã. Then, the ranking function of a function R : F −→ R is:

R(Ã) =
1

2

∫ 1

0

(Al
α +Au

α)dα

If Ã = (al, am, au) is a triangular fuzzy number, then R(Ã) =
1

4
(al + 2am + au).
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Definition 9. [10] If Ã = (al, am, au) and B̃ = (bl, bm, bu) are two triangular fuzzy numbers,
then order of Ã and B̃ based on the ranking function R will be:

(i) Ã ⋞ B̃ ⇐⇒ R(Ã) ≤ R(B̃)

(ii) Ã ≽ B̃ ⇐⇒ R(Ã) ≥ R(B̃)

(iii) Ã ≈ B̃ ⇐⇒ R(Ã) = R(B̃)

And the features of Linearity will be:

R(kÃ+ B̃) = kR(Ã) +R(B̃), k ∈ R

2.2 Math Operations on Triangular Fuzzy Numbers

If Ã = (al, am, au) and B̃ = (bl, bm, bu) are two triangular fuzzy numbers, then the mathematical
operations on triangular fuzzy numbers will be as follows:

(i) Addition Ã⊕ B̃ ≈ (a1 + b1, am + bm, au + bu)

(ii) Subtraction Ã⊖ B̃ ≈ (a1 − bu, am − bm, au − b1)

(iii) Multiplication Ã⊗ B̃ ≈ (a1b1, ambm, aubu), Ã, B̃ ⋟ 0̃

(iv) Division
Ã

B̃
≈ (a1, am, au)

(b1, bm, bu)
≈
(
a1

bu
,
am

bm
,
au

b1

)
, Ã, B̃ ≻ 0̃

(v) Scalar multiplication ∀k ∈ R, kÃ ≈

(ka1, kam, kau), k > 0

(kau, kam, ka1), k < 0

3 Fuzzy linear programming problem

A linear programming problem with fuzzy coefficients and variables is called a full fuzzy linear
programming problem. A full-fuzzy linear programming problem [11] with m constraints and
n fuzzy variables are defined by the following model:

Z̃ = max (ormin)(C̃T ⊗ X̃)

subject to Ã⊗ X̃ ⋞,≈,⋟ b̃; X̃ ⋟ 0̃ (P1)

where C̃ = [c̃j ]n×1, X̃ = [x̃j ]n×1, Ã = [ãij ]m×n, b̃ = [b̃j ]m×1, and ãij , c̃j , b̃i ∈ F, x̃j are
non-negative fuzzy numbers and 0̃ = (0, 0, 0).

Definition 10. [11] The fuzzy optimal solution to the full-fuzzy linear programming problem
(P1) will be X̃ = [x̃j ]n×1. will apply if the following conditions apply:

1) x̃j is a non-negative fuzzy number,

2) Ã⊗ X̃ ⋞,≈,⋟ b̃,
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and 3) If there exist any non-negative fuzzy number such as Ỹ = [ỹj ]n×1, to the point where
Ã⊗X̃ ⋞,≈,⋟ b̃, then R(C̃T⊗X̃) ≥ R(C̃T⊗Ỹ ) for the maximization problem and R(C̃T⊗X̃) ≤
R(C̃T ⊗ Ỹ ) for the minimization problem.

Definition 11. [11] Suppose that X̃ = [x̃j ]n×1 is the fuzzy optimal solution for full fuzzy
linear problem (P1). If there exist any non-negative fuzzy number such as Ỹ = [ỹj ]n×1, then
Ã ⊗ Ỹ ⋞,≈,⋟ b̃, and R(C̃T ⊗ X̃) = R(C̃ ⊗ Ỹ ), then Ỹ = [ỹj ]n×1 is called a fuzzy optimal
solution of (P1). Suppose that c̃j = (c1j , c

m
j , c

u
j ), x̃j = (x1j , x

m
j , x

u
j ), ãij = (a1ij , a

m
ij , a

u
ij) and

b̃j = (b1i , b
m
i , b

u
i ) represents triangular fuzzy numbers. Then, the fuzzy decision parameters and

variables in the model (P1) are converted as follows:

Z̃ = max (or min)
( n∑

j=1

(c1j , c
m
j , c

u
j )⊗ (x1j , x

m
j , x

u
j )
)

subject to
m∑
j=1

(a1ij , a
m
ij , a

u
ij)⊗ (x1j , x

m
j , x

u
j ) ⋞,≈,⋟ (b1i , b

m
i , b

u
i ) ∀i;

(x1j , x
m
j , x

u
j ) ⋟ 0̃ ∀j (p2)

After performing the mathematical operations discussed in Section 2-2, the model (P2) is
converted to the following form:

Z̃ = max (or min)
( n∑

j=1

cljx
l
j ,

n∑
j=1

cmj x
m
j ,

n∑
j=1

cuj x
u
j

)
subject to

( n∑
j=1

alijx
l
j ,

n∑
j=1

amijx
m
j ,

n∑
j=1

auijx
u
j

)
⋞,≈,⋟ (bli, b

m
i , b

u
i ) ∀i;

(xlj , x
m
j , x

u
j ) ⋟ 0̃ ∀ j (P3)

Now, using Nasseri et al.’s algorithm [11] and the ranking method, the FFLP (P2) turns into a
precise linear programming problem. The steps in the algorithm are briefly summarized below:
Step 1: Transform full fuzzy objective function using its ranking function(
R
(∑n

j=1 c
l
jx

l
j ,
∑n

j=1 c
m
j x

m
j ,
∑n

j=1 c
u
j x

u
j

))
into the crisp format.

Step 2: Full fuzzy constraints of the model (P2) using the following ranking functions are:
n∑

j=1

alijx
l
j ≤,=,≥ b1i ∀i

n∑
j=1

amijx
m
j ≤,=,≥ bmi ∀i

n∑
j=1

auijx
u
j ≤,=,≥ bui ∀i

Step 3: The non-negative Fuzzy constraints, that is, (x1j , xmj , xuj ) ⋟ 0̃ ∀j in the model (P2),
which guarantees the decision variables assessment as non-triangular fuzzy numbers, will be as
follows:

x1j ≥ 0, xmj − x1j ≥ 0, xuj − xmj ≥ 0, ∀j
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Therefore, using the above steps, the model (P2) turns into the exact linear programming
problem:

Z = max (or min)R
( n∑

j=1

cljx
l
j ,

n∑
j=1

cmj x
m
j ,

n∑
j=1

cuj x
u
j

)
subject to

n∑
j=1

alijx
l
j ≤,=≥ bli ∀i

n∑
j=1

amijx
m
j ≤,=≥ bmi ∀i (P4)

n∑
j=1

auijx
u
j ≤,=≥ bui ∀i

xlj ≥ 0, xmj − xlj ≥ 0, xuj − xmj ≥ 0, ∀ j

Theorem 1. Each feasible solution in the model (P4) is also a feasible solution in the model
(P3). Argument in [13].

Theorem 2. The optimal solution of the model (P4) is the optimal solution for the model
(P3) Argument in [13].

4 Revenue Efficiency in DEA

The output-oriented DEA model under the assumption of variable return to scale can be used
for calculation of output-oriented technical efficiency and revenue efficiency. Output-oriented
model under the assumption of variable return to scale can be written in the following form:

max φ0

subject to xio ≥
n∑

j=1

λjxij , i = 1, · · · ,m

φ0y0 ≤
n∑

j=1

λjyj

n∑
j=1

λj = 1

λj ≥ 0 ∀j

Where φ0 is output-oriented technical efficiency of DMUo in the output-oriented DEA model.
To calculate revenue efficiency the following revenue maximisation DEA problem is necessary
to solve [5]:
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max poy

subject to xio ≥
n∑

j=1

λjxij , i = 1, · · · ,m

y ≤
n∑

j=1

λjyj

λj ≥ 0 ∀j

Where po is vector output prices for DMUo. The overall revenue efficiency is defined as the
ratio of observed revenue to maximum revenue for the DMUo [5]:

α∗ = poyo/poy
∗
o

where y∗o is an optimal solution for model [Revenue].

4.1 Single output case

In this section, we deal with n DMUs with m inputs xxx = (x1, x2, · · · , xm) to produce one output
of y(> 0). For a DMUo(o = 1, · · · , n), let the inputs and output be xoxoxo = (x1o, x2o, · · · , xmo)

and yo (> 0)respectively, and the unit price of output yo be po (> 0).
Between the two efficiency measures (technical efficiency φ∗ and revenue efficiency α∗) we

have the following theorem.

Theorem 3. For the single output case, α∗ = 1/φ∗.

Proof. Let us denote y as φyo in [Revenue] and change the variable from y to φyo. Then, noting
yo > 0 and po > 0, [Revenue] becomes:

max poφyo

subject to xio ≥
n∑

j=1

λjxij , i = 1, · · · ,m

φyo ≤
n∑

j=1

λjyj

λj ≥ 0 ∀j

This program is equivalent to [CCR] and its optimal objective value is φ∗poyo. Thus we have

α∗ =
poyo
φ∗poyo

=
1

φ∗

Definition 12. (Allocative efficiency): The allocative efficiency γ∗ of DMUo is defined as the
ratio of revenue efficiency to technical efficiency, ie, γ∗ = α∗

φ∗ . The allocative efficiency γ∗ is less
than or equal to one, and DMUo is called allocatively efficient when γ∗ = 1 holds
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4.2 General case

Here we observe a more general case where we havem inputs xxx = (x1, x2, · · · , xm) and s outputs
yyy = (y1, y2, · · · , ys). Suppose that DMUs A and B have the same amount of inputs and outputs,
ie, xxxA = xxxB and yyyA = yyyB . Assume further that the unit price of DMU A is twice that of DMU
B for each output, ie, pppA = 2pppB . Under these assumptions, we have the following theorem:

Theorem 4. Both DMUs A and B have the same price (overall) and allocative efficiencies.

Proof. Since DMUs A and B have the same inputs and outputs, they have the same technical
efficiency, ie, φ∗

A = φ∗
B .

The revenue efficiency of DMU A (or DMU B) can be obtained by solving the following
LP:

max pppAyyy(= 2pppByyy)

subject to xiA(= xiB) ≥
n∑

j=1

λjxij , i = 1, · · · ,m

yr ≤
n∑

j=1

λjyrj , r = 1, · · · , s

λj ≥ 0 ∀j

Apparently, DMUs A and B have the same optimal solution (outputs) yyy∗A = yyy∗B , and hence the
same revenue efficiency, since we have:

α∗
A = pppAyyyA/pppAyyy

∗
A = 2pppByyyB/2pppByyy

∗
B = pppByyyB/pppByyy

∗
B = α∗

B .

They also have the same allocative efficiency by definition 1. This also sounds very strange,
since DMUs A and B have the same revenue and allocative efficiencies even though the price
of DMU B is half that of DMU A.

4.3 A new scheme

The previous two sections reveal the shortcomings and irrationality of the revenue and allocative
efficiencies proposed thus far.

These shortcomings are caused by the structure of the supposed production possibility set
P as defined by:

P =
{
(x, y)

∣∣x ≥ Xλ, y ≤ Y λ, λ ≥ 0
}

The production possibility set P is defined only on the basis of the technical factors X =

(x1, · · · , xn) ∈ Rm×n and Y = (y1, · · · , yn) ∈ Rs×n and has no concern with the prices of the
outputs P = (p1, · · · , pn). Banihashemi and Tohidi [2] define a set of new production possibility
set based on revenue as follows:
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Pp =
{
(x, ȳ)

∣∣x ≥ Xλ, ȳ ≤ Ȳ λ, λ ≥ 0
}

where Ȳ = (ȳ1, · · · , ȳn) and ȳj assuming that the matrices P and Y are non-negative, and all
inputs are revenue-oriented. Another assumption is that the elements ȳij = (pij , yij) ∀(i, j) are
in homogeneous units, e.g., $, so that the multiplication of these elements is significant. Based
on the definition of the set of new possible generation Pp, the new technical efficiency φ̄∗ is
given as the optimal solution to the linear programming problem:

φ̄∗ = max φ̄

subject to xo ≥ Xλ

φ̄ȳo ≤ Ȳ λ

λ ≥ 0

The new revenue efficiency ᾱ∗ is as follows:

ᾱ∗ = eȳo/eȳ
∗
o

where e ∈ Rm, is a row vector with the elements 1 and ȳ∗o is the solution to the linear program-
ming problem below:

[Nrevenue] max eȳ

subject to xo ≥ Xλ

φȳ ≤ Ȳ λ

λ ≥ 0

5 Network Data Envelopment Analysis Based on SBM Model

The common DEA models which measure the relative efficiency of multiple input/ output
decision-maker units may experience drawbacks such as neglecting intermediate products or
linked activities. In this section, the network data envelopment analysis and the parameters of
its production probability set are discussed.

Suppose n is the decision maker available in SectionK. mk and rk are the numbers of inputs
and outputs in the kth section. The link from division k to division h is represented by (h, k) and
the set of all links is shown by L. The observed data is {xkj ∈ Rmk

+ }(j = 1, · · · , n, k = 1, · · · ,K),
{ykj ∈ Rrk

+ }(j = 1, · · · , n, k = 1, · · · ,K) and {z(k,h)j ∈ R
t(k,h)

+ }(j = 1, · · · , n, (k, h) ∈ L).
Thus, the production possibility set in network data envelopement analysis will be:

P =
{
(xk, yk, z(h,k))

∣∣xk ≥ Xkλk, yk ≤ Y kλk, z(k,h) = z(k,h)λk (as outputs k), z(k,h)

= z(k,h)λh(as inputs h), λ ≥ 0
}

Assume that the following model (with input nature) has a variable returns to scale and DMUo,
(o = 1, · · · , n) unit under evaluation. Since the SBM model needs to have positive data, this
paper assumes that all data are positive.
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[NSBM ] θ0 = min
K∑

k=1

wk

[
1− 1

mk

( mk∑
i=1

sk−i
xkio

)]
subject to xko = Xkλk + sk−

yko = Y kλk − sk+

λk, λh, sk−, sk+ ≥ 0

z(k,h)o = z(k,h)λk
(
∀(k, h)

)
, (a)

z(k,h)o = z(k,h)λh
(
∀(k, h)

)
,

or

z(k,h)λk = z(k,h)λh
(
∀(k, h)

)
, (b)

Where z Where z(k,h) =
(
z
(k,h)
1 , · · · , z(k,h)n

)
∈ Rt(k,h)×n, Xk = (xk1 , · · · , xkn) ∈ Rmk×n, yk =

(yk1 , · · · , ykn) ∈ Rrk×n, sk− (sk+) are slacks vectors of the input (output). Given the link
constraints, there are several choices that can be made in two possible ways:

(a) In the first case, the values   of fixed intermediate current are taken into account.

z(k,h)o = z(k,h)λk
(
∀(k, h)

)
, (a)

z(k,h)o = z(k,h)λh
(
∀(k, h)

)
(b)In the second case, the values of the average flow in the link can be freely reduced or

increased.
z(k,h)λk = z(k,h)λh

(
∀(k, h)

)
, (b)

6 Revenue Efficiency in Network DEA

In this section we deal New Network Revenue Efficiency (NNRE) on Network Slack Based
Measure (NSBM) that prices play a role in the PPS on output. The production possibility set
based on price for the network data envelopment analysis is [2]:

Pp =
{
(xk, ȳk, z̄(k,h))

∣∣xk ≥ Xkλk, ȳk ≤ Ȳ kλk, z̄(k,h) = z̄(k,h)λk(as outputs k), z(k,h)

= z(k,h)λh(as inputs h), eλk = 1, λ ≥ 0
}

where

Ȳ k = (ȳk1 , · · · , ȳkn), ȳkj = (pk1jy
k
1j , · · · , pkrkjy

k
rkj

)

z̄(k,h) =
(
z̄
(k,h)
1 , · · · , z̄(k,h)n

)
, z̄

(k,h)
j =

(
ck1jz

(k,h)
1j , · · · , ckrkjz

(k,h)
rkj

)
Based on this set, a new production possibility, ᾱ∗k, is obtained from the following linear
programming problem:
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[NNRE] max
K∑

k=1

ȳk +
∑
h

z̄(k,h)

subject to xko ≥ Xkλk, k = 1, · · · ,K

ȳk ≤ Ȳ kλk, k = 1, · · · ,K

z̄(k,h)o = z̄(k,h)λh
(
∀(k, h)

)
(a)

z(k,h)o = z(k,h)λk
(
∀(k, h)

)
,

or

z̄(k,h)λk = z̄(k,h)λh
(
∀(k, h)

)
(b) (P5)

eλk = 1,

λk, λh ≥ 0

and

ᾱ∗k =

K∑
k=1

ȳ∗ko +
∑
h

z̄(k,h)o

/ K∑
k=1

ȳ∗ko +
∑
h

z̄∗(k,h)o

Where e ∈ Rm, a row vector with elements, equals 1 and ȳ∗o , z̄∗o are optimal solutions for model
(P5).

7 Proposed Fuzzy Revenue Efficiency Method in Fully Fuzzy Network Data
Analysis

In the real world, input-output data and their corresponding prices are not accurately observed
and may be available in inappropriate forms such as fuzzy numbers, in particular triangular
fuzzy numbers. Many researchers investigated the revenue efficiency with fuzzy and interme-
diate data. In these studies only, the decision parameters are considered as fuzzy and the
decision variables are precise quantifiers. However, in this paper, we use full-fuzzy models of
network data envelopment analysis to measure the revenue efficiency in a fully fuzzy environ-
ment in which all decision-making parameters and variables are represented by triangular fuzzy
numbers.

To measure fuzzy revenue efficiency in network data envelopment analysis, we extend the
model (4) to a completely fuzzy environment. Suppose that the decision maker unit is available
in Section K. mk and rk are the number of fuzzy inputs and outputs in the k-section. The link
from section k to part h is represented by (k, h) and the set of all links with L. The observed
fuzzy data j = 1, · · · , n, k = 1, · · · ,K x̃kj , ỹkj , z̃(k,h)j and p̃kj respectively contain the input and
Fuzzy outputs in each section, fuzzy link activities from section k to section h as well as the
revenue of the fuzzy input units in each section. If these data are triangular fuzzy numbers, we
will have:
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x̃kj =
(
xl,kj , xm,k

j , xu,kj

)
, j = 1, · · · , n, k = 1, · · · ,K

ỹkj =
(
yl,kj , ym,k

j , yu,kj

)
, j = 1, · · · , n, k = 1, · · · ,K

p̃kj =
(
pl,kj , pm,k

j , pu,kj

)
, j = 1, · · · , n, k = 1, · · · ,K

z̃
(k,h)
j =

(
z
l,(k,h)
j , z

m,(k,h)
j , z

u,(k,h)
j

)
, j = 1, · · · , n, (k, h) ∈ L

According to the above, the model (P5) will become a fully fuzzy model as follows:

[FFNNRE] min
K∑

k=1

˜̄yk ⊕
∑
h

˜̄z(k,h)

subject to x̃ko ≽
n∑

j=1

X̃k
j ⊗ λ̃kj , k = 1, · · · ,K

˜̄yk ≼
n∑

j=1

˜̄ykj ⊗ λ̃kj , k = 1, · · · ,K (P6)

˜̄z(k,h)o ≈
n∑

j=1

z̃
(k,h)
j ⊗ λ̃kj , ∀(k, h) (a)

˜̄z(k,h)o ≈
n∑

j=1

z̃
(k,h)
j ⊗ λ̃hj , ∀(k, h)

or
n∑

j=1

˜̄z
(k,h)
j ⊗ λ̃kj ≈

n∑
j=1

˜̄z
(k,h)
j ⊗ λ̃hj , ∀(k, h) (b)

n∑
j=1

λ̃kj ≈ 1̃

λ̃kj , λ̃
h
j ≽ 0̃ ∀j, k

The model (P6) is a fuzzy revenue envelopment model in the Fuzzy Network Data Envelopment
Analysis. After replacing the triangular fuzzy variables and parameters in model (P6) and using
mathematical operations on triangular fuzzy numbers and steps of the Nasseri algorithm, the
full-fuzzy linear programming model (P6) becomes the crisp linear programming:

max
1

4

[
K∑

k=1

ȳl,k +
∑
h

z̄l,(k,h) + 2
( K∑

k=1

ȳm,k +
∑
h

z̄m,(k,h)
)
+

K∑
k=1

ȳu,k +
∑
h

z̄u,(k,h)

]

subject to xl,ko ≥
n∑

j=1

X l,k
j λl,kj , k = 1, · · · ,K

xm,k
o ≥

n∑
j=1

Xm,k
j λl,kj , k = 1, · · · ,K

xu,ko ≥
n∑

j=1

Xu,k
j λl,kj , k = 1, · · · ,K
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ȳl,k ≤
n∑

j=1

ȳl,kj λl,kj , k = 1, · · · ,K (P7)

ȳm,k ≤
n∑

j=1

ȳm,k
j λm,k

j , k = 1, · · · ,K

ȳu,k ≤
n∑

j=1

ȳu,kj λu,kj , k = 1, · · · ,K

z̄l,(k,h)o =
n∑

j=1

z̄
l,(k,h)
j λl,kj , ∀(k, h)

z̄m,(k,h)
o =

n∑
j=1

z̄
m,(k,h)
j λm,k

j , ∀(k, h)

z̄u,(k,h)o =
n∑

j=1

z̄
u,(k,h)
j λu,kj , ∀(k, h)

zl,(k,h)o =

n∑
j=1

z
l,(k,h)
j λl,hj , ∀(k, h) (a)

zm,(k,h)
o =

n∑
j=1

z
m,(k,h)
j λm,h

j , ∀(k, h)

zu,(k,h)o =
n∑

j=1

z
u,(k,h)
j λu,hj , ∀(k, h)

or
n∑

j=1

z̄
l,(k,h)
j λl,kj =

n∑
j=1

z̄
l,(k,h)
j λl,hj , ∀(k, h)

n∑
j=1

z̄
m,(k,h)
j λm,k

j =
n∑

j=1

z̄
m,(k,h)
j λm,h

j , ∀(k, h) (b)

n∑
j=1

z̄
u,(k,h)
j λu,kj =

n∑
j=1

z̄
u,(k,h)
j λu,hj , ∀(k, h)

n∑
j=1

λl,kj = 1,
n∑

j=1

λm,k
j = 1,

n∑
j=1

λu,kj = 1, k = 1, · · · ,K

λl,kj ≥ 0, λm,k
j − λl,kj ≥ 0, λu,kj − λm,k

j ≥ 0 ∀j, k

ȳl,kj ≥ 0, ȳm,k
j − ȳl,kj ≥ 0, ȳu,kj − ȳm,k

j ≥ 0 ∀j, k

z̄l,kj ≥ 0, z̄m,k
j − z̄l,kj ≥ 0, z̄u,kj − z̄m,k

j ≥ 0 ∀j, k

Theorem 5. Model (P7) is a feasible model.

Proof. This model has a feasible solution as follows :
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λl,ko = 1, λl,kj = 0, j ̸= o

λm,k
o = 1, λm,k

j = 0, j ̸= o

λu,ko = 1, λu,kj = 0, j ̸= o

λl,ho = 1, λl,hj = 0, j ̸= o

λm,h
o = 1, λm,h

j = 0, j ̸= o

λu,ho = 1, λu,hj = 0, j ̸= o

ȳl,k = ȳl,ko ȳm,k = ȳm,k
o ȳu,k = ȳu,ko

And with considering (b)

z̄l,(k,h)o = z̄l,(k,h)o z̄m,(k,h)
o = z̄m,(k,h)

o , z̄u,(k,h)o = z̄u,(k,h)o

Theorem 6. The optimal solution for the model (P7) will be a model optimization solution
(P6). The proof of this is similar to the proof of Theorem 1.

Definition 13. The fuzzy cost efficiency of the ith DMU in the FFDEA is defined as the ratio
of the minimum fuzzy cost to the observed fuzzy cost of DMUi:

˜̄α∗k
i =

∑K
k=1

˜̄y∗k
i ⊕

∑
h
˜̄z
∗(k,h)
i∑K

k=1
˜̄xk
i ⊕

∑
h
˜̄z
∗(k,h)
i

=

(∑K
k=1 ȳ

l,k
i +

∑
h z̄

l,(k,h)
i ,

∑K
k=1 ȳ

m,k
i +

∑
h z̄

m,(k,h)
i ,

∑K
k=1 ȳ

u,k
i +

∑
h z̄

u,(k,h)
i

)
(∑K

k=1 ȳ
l,k∗
i +

∑
h z̄

l,(k,h)∗
i ,

∑K
k=1 ȳ

m,k∗
i +

∑
h z̄

m,(k,h)∗
i ,

∑K
k=1 ȳ

u,k∗
i +

∑
h z̄

u,(k,h)∗
i

)
=

( ∑K
k=1 ȳ

l,k
i +

∑
h z̄

l,(k,h)
i ,

∑K
k=1 ȳ

m,k
i +

∑
h z̄

m,(k,h)
i ,

∑K
k=1 ȳ

u,k
i +

∑
h z̄

u,(k,h)
i∑K

k=1 ȳ
u,k∗
i +

∑
h z̄

u,(k,h)∗
i ,

∑K
k=1 ȳ

m,k∗
i +

∑
h z̄

m,(k,h)∗
i ,

∑K
k=1 ȳ

l,k∗
i +

∑
h z̄

l,(k,h)∗
i

)

where (ȳl,k∗i , ȳm,k∗
i , ȳu,k∗i ∀i, k, h) (z̄

l,(k,h)∗
i , z̄

m,(k,h)∗
i , z̄

u,(k,h)∗
i ) are the optimal solutions ob-

tained from model (p6).

Definition 14. ith DMU in the network data envelopment analysis is called Fuzzy Cost Effi-
ciency if the observed Fuzzy Cost and the minimum Fuzzy Cost equal DMUi, that is,

K∑
k=1

˜̄yki ⊕
∑
h

˜̄z
(k,h)
i ≈

K∑
k=1

˜̄y∗i ⊕
∑
h

˜̄z
∗(k,h)
i

R
( K∑

k=1

˜̄yki ⊕
∑
h

˜̄z
(k,h)
i

)
≈ R

( K∑
k=1

˜̄y∗i ⊕
∑
h

˜̄z
∗(k,h)
i

)

8 Numerical example

In this section, an illustrative example of electric power companies are presented for describing
network DEA. As we know, the vertically integrated electric power companies consist of sev-
eral divisions such as generation, transmission and distribution. For illustrative purpose, ten
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vertically integrated electric power companies in the U.S in 1994 [16]. The inputs, outputs and
links are as follows:
Generation (Div1):
Input1 = Labor input (number of employees)
Transmission (Div2):
Input2 = Labor input (number of employees)
Output2 = Electric power sold to large customers
Distribution (Div3):
Input3 = Labor input (number of employees)
Output3 = Electric power sold to small customers
Link (1-2) = Electric power generated (output from Generation Devision and input to Trans-
mission Devision)
Link (2-3) = Electric power sent (output from Transmission Devision and input to Distribution
Devision) Here, it is assumed that the intermediate flow rates are able to rise or fall freely in the
link, so that the proposed model for evaluating the fuzzy revenue efficiency will be as follows:

max
1

4

[
K∑

k=1

ȳl,k +
∑
h

z̄l,(k,h) + 2
( K∑

k=1

ȳm,k +
∑
h

z̄m,(k,h)
)
+

K∑
k=1

ȳu,k +
∑
h

z̄u,(k,h)

]

subject to xl,ko ≥
n∑

j=1

X l,k
j λl,kj , k = 1, · · · ,K

xm,k
o ≥

n∑
j=1

Xm,k
j λm,k

j , k = 1, · · · ,K

xu,ko ≥
n∑

j=1

Xu,k
j λu,kj , k = 1, · · · ,K

ȳl,k ≤
n∑

j=1

ȳl,kj λl,kj , k = 1, · · · ,K

ȳm,k ≤
n∑

j=1

ȳm,k
j λm,k

j , k = 1, · · · ,K
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j λu,kj =
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z
u,(k,h)
j λu,hj , ∀(k, h)

λl,kj ≥ 0, λm,k
j − λl,kj ≥ 0, λu,kj − λm,k

j ≥ 0 ∀j, k

ȳl,kj ≥ 0, ȳm,k
j − ȳl,kj ≥ 0, ȳu,kj − ȳm,k

j ≥ 0, ∀j, k
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z̄
l,(k,h)
j ≥ 0, z̄

m,(k,h)
j − z̄

l,(k,h)
j ≥ 0, z̄

u,(k,h)
j − z̄

m,(k,h)
j ≥ 0, ∀j, k, h

Table 1 contains the fuzzy inputs, fuzzy outputs, and fuzzy revenues of each division.

Figure 2: Vertically integrated electric power companies

The revenue of the input and output links is also given in Table 2.

Table 1: Fuzzy inputs, fuzzy outputs, fuzzy input cost in three divisions

Div1 Div2 Div3

DMU Input1 Input2 Output3 P2 Input3 Output3 P3

A (0.836,0.838,0.840) (0.275,0.277,0.279) (0.876,0.879,0.881) (896,900,903) (0.960,0.962,0.965) (0.335,0.337,0.340) (685,687,689)

B (1.231,1.233,1.235) (0.130,0.132,0.133) (0.535,0.538,0.540) (737,739,742) (0.440,0.443,0.445) (0.15,0.18,0.20) (190,194,196)

C (0.318,0.321,0.323) (0.042,0.045,0.048) (0.909,0.911,0.914) (138,142,145) (0.482,0.485,0.487) (0.195,0.198,0.200) (280,285,287)

D (1.480.1.483,1.485) (0.110,0.111,0.113) (0.55,0.57„0.59) (860,863,865) (0.465,0,467,0.470) (0.488,0.491,0.495) (398,401,404)

E (1.590,1.592,1.595) (0.205,0.208,0.211) (1.085,1.086,1.089) (305,307,310) (1.070,1.073,1.075) (0.370,0.372,0.375) (175,179,182)

F (0.76,0.79,0.81) (0.136,0.139,0.141) (0.720,0.722,0.724) (1198,1200,1203) (0.543,0.545,0.548) (0.250,0.253,0.255) (1052,1054,1056)

G (0.449,0.451,0.454) (0.073,0.075,0.077) (0.507,0.509,0.511) (268,270,273) (0.365,0.366,0.368) (0.238,0.241,0.244) (390,394,396)

H (0.405,0.408,0.410) (0.072,0.074,0.076) (0.617,0.619,0.621) (985,987,990) (0.226,0.229,0.231) (0.095,0.097,0.099) (272,276,280)

I (1.860,1.864,1.865) (0.059,0.061,0.063) (1.021,1.023,1.025) (354,356,358) (0.689,0.691,0.693) (0.35,0.38,0.40) (838,840,843)

J (1.220,1.222,1.225) (0.147,0.149,0.151) (0.765,0.769,0.771) (467,470,472) (0.336,0.337,0.339) (0.175,0.178,0.180) (159,161,164)

The above model is solved using GAMS software and the results are shown in Table 3.
As Table 3 shows none of the decision making units are revenue efficiency. Indeed, one of

the major drawbacks of the network models is that the full efficiency cannot be achieved in
most of the cases. To solve this issue, efficiency of each unit can be devided to the maximum
efficiency, resulting to deriving the relative efficiency (Table 3, column 4). In this case, unit H
is the relative revenue efficiency and units A, C, D, F and G have the relative revenue efficiency
more than half.
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Table 2: Fuzzy unit input link revenue

Link
Link12 Lp1 Link23 Lp2
(0.891,0.894,0.897) (945,947,950) (0.360,0.362,0.365) (1031,1034,1036)
(0.675,0.678,0.780) (680,682,685) (0.185,0.188,0.190) (986,989,992)
(0.835,0.836,0.838) (700,705,708) (0.205,0.207,0.210) (750,752,755)
(0.865,0.869,0.872) (1125,1128,1130) (0.514,0.516,0.520) (1109,1111,1113)
(0.690,0.693,0.695) (490,492,495) (0.405,0.407,0.410) (850,852,855)
(0.961,0.966,0.970) (665,670,673) (0.265,0.269,0.273) (640,642,645)
(0.645,0.647,0.650) (1085,1087,1090) (0.255,0.257,0.259) (820,824,826)
(0.752,0.756,0.760) (924,926,930) (0.101,0.103,0.105) (970,973,975)
(1.189,1.191,1.194) (630,634,638) (0.400,0.402,0.405) (910,913,915)
(0.790,0.792,0.795) (775,779,782) (0.185,0.187,0.190) (645,647,650)

Table 3: Evaluating and ranking revenue efficiency

DMUs ˜̄α∗k R( ˜̄α∗k) Relative Efficiency Rank
A (0.433,.0.648,0.734) 0.648 0.733 4
B (0.130,0.331,0.450) 0.331 0.374 8
C (0.435,0.680,0.872) 0.680 0.769 3
D (0.435,0.553,0.754) 0.553 0.625 6
E (0.125,0.263,0.365) 0.263 0.297 10
F (0.534,0.709,0.845) 0.709 0.802 2
G (0.456,0.647,0.745) 0.647 0.732 5
H (0.534,0.884,0.915) 0.884 1 1
I (0.234,0.403,0.478) 0.403 0.456 7
J (0.25,0.33,0.56) 0.33 0.373 9

9 Conclusion

Given the importance of revenue efficiency in the management and economic sectors as well
as inaccuracies in real-world data, this paper proposes a new idea of the extension of classical
NNRE model to fully fuzzy environments for dealing with the practical situations more realisti-
cally. A FFNNRE model has been developed where input–output data and their corresponding
prices are taken in triangular membership forms. A method based on ranking function ap-
proach is presented to transform FFNNRE model into the crisp linear programming problem.
The final FFNNRE measures are then defined as TFNs. Finally, using the presented ranking
function in the article, the DMUs are ranked based on revenue efficiency.

Since revenue efficiency sensitivity analysis helps the manager or decision maker to modify
the amount of outputs under evaluation to maximize revenue . Therefore, future work can
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include sensitivity analysis of performance, as well as finding the appropriate stability area to
maintain revenue efficiency in precise and imprecise network data envelopment analysis.
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چکیده

نامتناهی نیمه چندهدفه بهینه سازی مسائل برای جدید تک مقداری شکاف تابع چند مطالعه و معرفی به ما مقاله این در
مسئله یک برای شکافی تابع هر اصلی خواص از یکی که آنجا از پرداخته ایم. لیپ شیتز موضعا داده های با غیرمشتق پذیر
نیز شده معرفی جدید شکاف توابع خاصیت این است، مسئله آن جواب های مشخص سازی در آن توانایی بهینه سازی،

شده اند. بیان کلارک زیرمشتق حسب بر احکام تمامی است. شده ارائه
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چکیده

تابع می شود تعریف قید بینهایت تعداد توسط که همواری غیر هدفه چند ریزی برنامه مسئله یک برای مقاله این در ما
سره کارایی و ضعیف کارایی کارایی، ما آنگاه است. دیگر مقالات در مفهوم این تعمیم که می کنیم معرفی را جدیدی شکاف
اینوکس −Φ, ρ توابع مفهوم مبنای بر ما مفاهیم تمام می کنیم سازی مشخص جدید شکاف تابع این توسط را فوق مسئله

گشته اند. تنظیم کلارک مشتق زیر و
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چکیده

معیاره چند تصمیم گیری تکنیک های از استفاده با را شعاعی پایه توابع مرکزی نقاط بهترین که شود می تلاش مقاله این در
مورد جزئی مشتقات با دیفرانسیل معادلات حل برای شعاعی پایه ای توابع بر مبتنی روش دو کنیم. انتخاب (ⅯⅭⅮⅯ)
این، بر علاوه می باشند. هرمیتی درون یابی بر مبتنی دوم روش و کانسا روش بر مبتنی اول روش می گیرد. قرار استفاده
گزینه های عنوان به لوباتو گاوس لژاندر و لژاندر چبیشف، هم فاصله، کارتزین، مرکزی: نقاط از مجموعه پنج انتخاب با
کمک با گزینه ها تاثیرگذار، معیارهای عنوان به اجرا زمان و درون یاب ماتریس حالت عدد خطا، متغیرهای: و تحقیق
رتبه بندی این گردید. انتخاب آمده بدست رتبه اساس بر مرکزی نقاط بهترین نهایت در گردیدند. رتبه بندی پرامیتی تکنیک
کانسا روش از مناسب تر مرکزی نقاط عنوان به یکنواخت غیر نقاط از استفاده با هرمیتی درون یابی روش که می دهد نشان

است. مرکزی نقطه هر با
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تعریف پوچ شونده قیدهای توسط که می گیریم نظر در را محدب چندهدفه ی بهینه سازی مسئله ی یک مقاله این در ما
برای لازم شرط یک مردخویچ، نرمال مخروط توسط و کرده معرفی مسئله برای جدید تعریفی قید یک ابتدا، در می شود.
برای نیز کافی شرط شده، بیان لازم شرط که کرد خواهیم ثابت آنگاه داد. خواهیم ارائه مسئله سره ی موثر جواب های

شده اند. فرمول بندی محدب زیرمشتق حسب بر ما احکام می باشد. سره موثر جواب های
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اصلاح شده سکانت معادلات براساس جدید پارامتر دو مزدوج، گرادیان روش های در دای−لیاو پارامتر تنظیم کار ادامه در
کرده ایم. ارایه می کند، استفاده جدید مزدوجی شرط یک از که متفاوت رویکرد دو با فوکوشیما، و لی توسط شده معرفی
هستینس−استیفل مزدوج گرادیان روش یک عنوان به همکارانش و ژنگ توسط شده ارایه روش براساس پارامتر اولین
محدب توابع برای پیشنهادی روش های سراسری همگرایی است. نیوتن شبه رویکرد براساس پارامتر دومین است.
روش های مقایسه و CUTEr مسایل از مجموعه ای از استفاده با عددی نتایج است. شده ثابت عمومی توابع و یکنواخت
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چکیده

داده ها دقیق اندازه گیری می باشد. فازی تمام شبکه ای داده های پوششی تحلیل در درآمد کارایی ارزیابی مقاله، این هدف
یکی نمی باشد. درستی فرض مسائل، حل در داده ها بودن دقیق فرض بنابراین نمی باشد، امکان پذیر عملا واقعی دنیای در
مدل تبدیل برای خطی، رتبه بندی توابع از مقاله این در می باشد. فازی داده های نادقیق، داده های با مواجهه راه های از
درآمد کارایی مثلثی، فازی اعداد فرض با و می شود استفاده دقیق خطی برنامه ریزی مسئله یک به درآمد کارایی فازی تمام

می دهد. نشان را پیشنهادی روش عددی مثال یک پایان، در می شود. اندازه گیری تصمیم گیرنده ها فازی
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