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Editor in Chief’s Letter

It would be our great honor to have you as the readers of Journal of “Control and
Optimization in Applied Mathematics (COAM)”. The present journal is published and
supported by Payame Noor University (PNU) as a semi-annual journal. Our main
objective is to facilitate scientific regional and global discussions and collaborations
between specialists in different fields of applied mathematics, especially in the fields
of control and optimization. We hope that scholars and experts of different fields of
applied mathematics find our scientific journal a platform for international commu-
nications of insight and knowledge. To assure the respectful subscribers about high
quality of the journal, each article is reviewed by subject-qualified referees, the same
as any other well-known international journal of applied mathematics.We believe that
by publishing high quality and creative researches, we will observe more collaborations
with our journal. We kindly invite all applied mathematicians especially in the fields of
control and optimization, to join us by submitting their original works to the Journal
of “Control and Optimization in Applied Mathematics”. I want to thank the respectful
colleagues of COAM, as well as referees, reviewers, and editors for their kind dedication

and vision.
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1 Introduction

The notion of gap function for mathematical programming problems has been studied
in various publications. This concept was first defined by Hearn in [7] for the scalar
value convex optimization problems, and was then introduced for variational inequality

problem in [1].

For multi-objective optimization problems with smooth data, the gap function has
been presented in [4] as a set-valued function. Also, two kinds of set-valued gap func-
tions are introduced for smooth and non-smooth multiobjective optimizations in [14].
Since the initial calculations of set-valued functions are faced with special problems,
working with these gap functions is very difficult. Recently, Caristi et al. [4] intro-
duced some single-valued gap functions, with complex structures, for multi-objective

optimization problems.

All previously mentioned papers considered the (multiobjective) optimization prob-
lems with the finite number of constraints. Kanzi and Soleymani-Damaneh [10] stud-
ied the concept of gap function for optimization problems with the infinite number of
quasi-convex constraints, i.e., quasi-convex semi-infinite problems. Also, the concept
of gap function extended to linear semi-infinite multiobjective optimization in [11], and

quasi-variational inequality problems in [13].

The purpose of this article is to introduce several scalar-valued gap functions, with
simple structures, for semi-infinite multi-objective optimization problems with locally
Lipschitz functions. In fact, the purpose of the present paper is to give a generalization
of sources listed above. The paper mainly deals with constrained optimization problems

formulated as

P) minimize f(z) = (fi(z),..., fp (2))
subject to g4 () <0 with a € A,

where f; : R" — RU{+oo} fori € A :={1,...,p} and g, : R” — R for a € A are
(not necessary differentiable) locally Lipschitz functions, and the index set A # ) is

arbitrary.

It is worth mentioning that Mastroeni [12] presented a descent method for solving
the variational inequalities and optimization problems (under differentiability) based
on gap function algorithms. Also, some applications of gap functions in iteration al-
gorithms, proper efficiency, and scalarization of multiobjective optimization can be
studied in [4, Section 5].
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2 Notations and Preliminaries

In this section, we present definitions and auxiliary results that will be needed in the
rest of the paper.

Let R™ be the m—dimensional Euclidean space. Denote by 0,, and R’ the zero
m times

——
vector (i.e., (0,...,0)) and the nonnegative orthant of R™ respectively. Also, the open
ball with center a € R™ and radius € > 0 is denoted by B, (a). The order and weak

order in R™ can respectively be defined by :

(al, ...,am) < (bl, ...,bm) — a' <, Vi=1,...,m,
al<bla 316{1,...,m},
(') @™ < (B, ., b7) = ai<bi, Vi=1,..m.

Let ¢ : R®™ — R be a locally Lipschitz function. The Clarke directional derivative of
p at & € R™ in the direction v € R", and the Clarke subdifferential of ¢ at & introduced

in [8] are respectively given by

t —_
©(;v) := limsup Py + t) cp(y)’
y—i, t10 t

dep(2) == {€ € R™ | (¢,v) < OO(d;v)  forallwe R"}.

The Clarke subdifferential is a natural generalization of the derivative since it is known

that when function ¢ is continuously differentiable at Z, then d.p(Z) = {Vp(2)}.

Theorem 1. (Lebourg mean-value [8]) Let x,y € R™, and suppose that ¢ is a locally
Lipschitz function from R" to R. Then, there exists a point u in the open line segment
(x,y), such that

o(y) — p(x) € (Ocp(u),y — ).

Definition 1. Let ¢ : R — R be a locally Lipschitz function. We say that ¢ is

c—quasiconvex (i.e., Clarke quasiconvex) at & € R™ if for any x € R"

p(r) < (@) = (&2 —2) <0 VE € Dep().

3 Main Results

As a starting point of this section, we introduce the available set of (P) and the set of

active indices a possible point x( as follows:
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S:={zxeR"|gy(z) <0, VaecA},
A(zg) :={a € A| ga(x9) =0}.
A given point zp € S is said to be an efficient (resp. weakly efficient) solution
for (P) if there is no x € S satisfies f(x) < f(zg) (resp. f(z) < f(z¢)). The set of
all efficient solutions and weakly efficient solutions of (P) are denoted by E and W,

respectively.

For each zy € 5, let:

Oefi (x0) == 0cfi (w0) \ {0}, Vi€ A,
Oef (w0) = Def1 (o) X ... % Defy (x0) C (R™)P,
8£f (900) = 0.f (xO) \ {Onp} = ( L f1 (xﬂ) X... X acfzu (xo)) \{Onp}'

It is easy to see that

(&1,...,&) € 0cf (z0) | & # 0y forallzGA}
(&1,...,&p) € 0cf (x0) | & # On forsomezeA}
8f( ) OLf (z0) C Def (wo) -

| |

First, we introduce a quasi-gap function for (P).

Definition 2. For each (z,y,2) € S x § x R" and § = (&1,...,&) € 0.f(z), the

quasi-gap function ¢y (z, z,&) is defined as:

y (1,2,8) : Z@,

Theorem 2. let f; be c—quasiconvex function at xzg € S for i € A.

(I) If for each y € S there exists some £W) € 5cf (o) with (py(li(],.’li(],f(y)) < 0, then
xg € E.

(II) If for each y € S there exists some £W) € oL f (20) with ¢y, (z0,0,£®)) < 0, then
xrog € W.

Proof. (I) Suppose that xo ¢ E. Then, we can find some z* € S and k € A, satisfying
fi(x®) = fi(zo) <0, Vie A, and fi(z%) — fi (z0) <O. (1)
The above inequalities and the c—quasiconvexy of f; functions at x¢ imply that

(&i,a" —mo) <0, Vi€ A, V& € defi(wo). (2)
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At the other hand, the assumptions of theorem yield that there exists an £&7) €
Oef (x0) such that

Pa* (x07$07§(x*)) S 0. (3)
It is sufficient to prove that

<§,(€x*),x* —z0) <0, (4)
since (2) and (4) imply @+ (20,20,6@)) = P <§i(x*),a:0 — a*) > 0, which

contradicts (3).

If (4) does not hold, in view of (2) we obtain <§]ix*), z* — z9) = 0. By latter and
f,(f*) # 0, we can find some sequence {w;} — x* — ¢ such that <£,(f*), wt> > 0 for
all t € N. Since wy = (w¢ + xg) — xo, the latter inequality and c—quasiconvexity
of fi lead us to

<§ng*), (wi +20) —x0) >0 = fr(ws + x0) — fe(zo) >0, VteN.
Hence, the continuity of f; concludes that:

Jim (fio(wr +20) = fi(20)) =0 = fi(a®) — fu(zo) =0,

which contradicts (1). Thus (4) holds.

(IT) If zop ¢ W, then there exists an #* € S such that f;(*) — fi(zo) <0, for all i € A.
By definition of 9% f (x), there exists a k € A, such that 5,(;0*) # 0,. Similar to
the proof of (I), it can be seen that <§,(f*), Tt — xo> < 0. The remainder of proof

is similar to (I) and is hence omitted.
O

The following example shows that the converse of the above theorem does not valid.

Example 1. : Consider the following problem:

min ( |z1| + 21, |22 +$2)

subject to x1 + zo < 0.

In fact, fi (z1,22) = |z1| + 21, fo (21, 22) = |22| + 22, and g (z1,x2) = x1 + z2. Consid-
ering xo = (0,0), we have oy € E, and

acfl (‘TO) = [07 2] X {O}a

acf2 (xO) = {0} X [07 2]'
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Taking § = (§1,92) = (—1, 1) € S, for cach &) € D.f1 (x0) and £ € . f (x0), we
have éy) = (a1,0) and féy) = (0, az) for some ay,as € (0,2]. Thus,

0g(x0,20,£W) = {(a1,0), (=91, —2) ) + (0, a2) , (—f1, —f2) ) = a1 + az > 0.
O

Theorem 3. If 2y € E, then for each y € S and m € N, there exists 2™ e By /m (7o)
and f(m) = (ém), e })m)) € 8Cf(z(m)), such that

(&M y—x0) >0,  VieA, (5)
or
(€ Yy — 2g) >0, Ik € A.

Proof. Since the proof is the same as [4, Theorem 4.2], it is omitted, An only different
point of these proves is that in [4, Theorem 4.2] the feasible set is convex, and here it

is not necessarily convex. ]
Remark 1. The result of Theorem 3 can be written as

weE = VYyeS, VmeN, 30" By, (x), 3E™,...,M) e d.f(=m),
(< gm)ay - 33'0>, <£§m)7y - J;0>7 SERE) <£Z()m)’y - l‘0>> f Op'

The similar proof of Theorem 3 shows that:

T eW = VyeS, VmeN, 30" cBy,, (x), 3E™,... M) e d.f(z™),
(6™ y = w0y, (6™ y = 20), ., (65,5 = 20)) # Op.

Definition 3. Suppose that x( is an efficient solution to (P). The point y € S is said
to be compatible with xg if the number of natural numbers m, which is satisfied in (5)

is infinite. The set of all compatible points with zg is denoted by S(zo).

The following corollary of Theorem 3, is stated as the approximation converse of

Theorem 2.

Theorem 4. Suppose that zyp € E and y € S(xg). Then there exists a sequence
{z(m)}j::l converging to xg, and {‘f(m)}zzl with £ € 9, f (z(m)), such that:

Py (mo,z(m),f(m)) <0, Vm € N.

Now, we introduce a new gap function for the problem (P).



A. Hassani Bafrani, A. Sadeghieh/ COAM, 3(2), Autumn-Winter 2018 7

Definition 4. For each (z,z) € S xR" and & := (§1,...,&p) € 0.f(2), the gap function
¢ (x,2,€) is defined as:

o (z,2,8) = SUP{Z@,:E - y>}-

yes iy

It is easy to see that

90 (mazaé) = Sllp Spy (x727£) *
yes

Notice that the above gap function is more suitable than the gap function, which is
defined in [4], because of z = z in that gap function, so our gap function is its extension.
Moreover, the gap function presented in [4] is more complicated in calculus, since its

style is infimum of superior.

Lemma 1. For each z € S, z € R", and £ € 9.f (), we have:

¢ (x,2,€) > 0.
Proof. By taking y = x in definition of ¢ (z, 2, &), the result is clear. O
Now, we can state the following famous theorem.

Theorem 5. Suppose that f; is a c—quasiconvex function at xg € S for each i €

{1,...,p}.
(1) If p(x0, 0, &) = 0 for some € € d.f (x0) , then zo € E.

(IT) If p(z0,z0,£) =0 for some & € oLf (o), then xg € W.

Proof. (I) ¢(x0,x0,&) = 0 implies that for each y € S we have ¢y (xg, z0,&) < 0. The-

orem 2 justifies the result.

(IT) Applying the proof of part (I), the result holds.
O

Remark 2. In the best of our knowledge, the inverse of Theorem 5 is not valid, even
by convexity and differentiability of involving functions. However, in [4] shows that the
inverse of Theorem 5 holds for set-valued gap function at a proper, efficient solution
under some suitable assumptions. However, the characterization of situations for the

satisfactory of the inverse of Theorem 5 is an important open problem.

Now, we introduce another gap function for the problem (P), in which satisfies in

the converse of Theorem 5.
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Definition 5. For each z € S, £ := (&1,...,&) € cf (z), and X := (A1,...,\p) € RE
with Y7 A =1, we define:

p
90* (x7§7 )‘) = Supz )\z<§um - y>

ves o1

It is trivial that by using the proof of Theorem 5, if f; for each ¢ = 1,...,p is
c—quasiconvex at zg € S, and if p*(xo, é, A) = 0 for some fe 5cf(:v0) and A > 0,, then

xg € E. The proof of the converse of this result needs the following definition.

Definition 6. & € S is said a Karush-Kuhn-Tucker point for problem (P) if there exist
A= (M., 0p) >0, with >°F A =1, and po > 0 for o € A(2), a finite number of

them are nonzero, such that:

P
0> XNdefi (@) + D HaOega (2).
i=1 acA(#)
& € S is said to be strong Karush-Kuhn-Tucker point for problem (P) if the above
inclusion holds for some A := (Ay,...,A,) > 0,. The set of all Karush-Kuhn-Tucker
points (resp. strong Karush-Kuhn-Tucker points) of (P) is denoted by K (resp. SK).

Many authors have studied necessary conditions for optimality of multiobjective
semi-infinite programming; see, for example, [2, 5, 8, 9]. We can formulate these nec-

essary conditions as follows:

JJQEW:>."IIQEIC,

zg € F = 29 € SK.

The above mentioned necessary optimality conditions hold under some assumptions
(same as closedness of cone (Uae Az0) 8Cga(xg)> and\or compactness of index set A)
and suitable constraint qualifications (same as Abadie, or Mangasarian-Fromovitz).
These special conditions differ from paper to paper, and none of them play a role in
proving converse of the Theorem 5, so, naturally, we use zg € K and ¢ € SK in place
of zg € E and zg € W.

Theorem 6. Let oy € K. If g, functions are c-quasiconvex at zq for a € A (xg), then
there exist £ € O.f (x9) and A € R} such that ¢* (z9,£,A) = 0.

Proof. By definition of K, there exist some A := (A1,...,y) € RY with 7 | A, =1,
and nonnegative fiq,, ..., fta, With {a1,..., 04} € A(zg) ,and & € O.f; (x0) for i =

1,...,p, and (u,, € Ocba,, (xo) for m =1,..., ¢, such that:

p q
D ik + D pamCom = 0. (6)
=1 m=1
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Let y € S. Then,

9o, (Y) <0 = ga,, (x0), Ym=1,...,q.

Thus, according to c-quasiconvexity of g,,, functions
(Coamry —20) <0,  VYm=1,...,q.

The last inequality and (6) imply that:

p q
> Al y—20) == pre {Cam ¥ — 0) > 0.
=1 m=1

Therefore,
> A& w0 —y) 0.
i=1
From this and > F_, <£Z-, Ty — a:0> = 0, the result is proved. O

As mentioned in Remark 2, the converse of Theorem 5 is not valid in general. The

following example shows this invalidity.

Example 2. Considering the problem that is considered in Example 1. we saw that
zo = (0,0) € E and
@y(% 275) = —a1y1 — a2y2,
for each y = (y1,y2) € S and 51 = (a1,0) and ég = (0, a2) with a1, a2 € (0,2]. Hence,
90(900,300, (él7€2)> = sup{ — a1Yy1 — a2y2 ! Y1 +y2 < 0}~

Since ay,as > 0, taking y; < 0 and ys < 0, implies that:
@(960,5007 (éth)) > 0.
In a similar way it can be shown that for each (fg, 55) € 0 f(x0) we have

90(%, xo, (5%, 53)) > 0.

The following example summarizes our results.
Example 3. Consider the following problem:
x
z—1 if ze€2,+00),
3—z if z€(—00,2)

1
2
min 23 if x € [1,400)

if U (0, 1) {
0 if z€(—o0,0]

subject to |z — 3| — 3 < 0.
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ot if (0.1) 1 if ze2,+00)
: x — if x , +00),
In fact, fi(x) = 23 if ze [1,400) , fa(z) = ) , and
) 3—x if z€(—00,2)
0 if z€(—00,0]
gi(z) = |z — 5| — 1. It is easy to check that O.f1 (1) = [5,3], dcfa (1) = {-1},
d.g1 (1) = {0}, and A(1) = {1}. Thus, taking ¢ := (1, —1) €d.f(1
(1, 1,5) =0, and so 1 € F by Theorem 5.
On the other hand, since

), we conclude that

0€.f1(1)+ 0ufa (1) + 0egr (1),

then 1 € SKC C K by setting Ay = Ao = p; = 1. This fact and Theorem 6 deduce that
(1,5,)\):0for)\.:(, ). O

4 Conclusion

In conclusion, for each z,y € S, z € R™, & € 9.fi(z), and \; > 0 with >°F | A\ =1, let
P

ZEZ&)\ Z)\lg’u - 7

(33,2,5,)\) —bUPSOy(x z 5 )\>
yes

©, as a generalization of ¢ and ¢*, is a new general form of gap function for (P). In
similar way to Theorems 3, 5, and 6 (apart from some small differences), the following

theorems can be proved:

Theorem 7. Suppose that the f; (for ¢ = 1,...,p) and g, (for a € A(zp)) are

c—quasiconvex functions at xg. Then, the following assertions hold:

(1) 3 € Bef(x0), IN> 0y, B(x0,20,E,A) =0 = 2 € E.

suitable conditions
-

(II) xg € FE ro € SK = Hf S 8cf($0) ax\ > Op, (.%'0,.1’0,5 /\) =0.

Theorem 8. Suppose that the f; (for i = 1,...,p) and g, (for a € A(zg)) are

c—quasiconvex functions at xg. Then, the following assertions hold:
(1) 3¢* € O f(xo), N> 0p, B0, 20,8 0) =0 = x9€ W.
(IT) @ € W *wheblecanditions o e ) —s 3¢ € Duf(w0), IN > 0p, B(0,70,&, A) = 0.

Theorem 9. Suppose that each f; (fori =1,...,p) is a c—quasiconvex function at x.

Then, the following assertions hold:
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(I) Yy € 5, Hf(y) S 8Cf(330), A > Op, @y(l‘o,ﬂjo,f(y),)\) <0 = z9g€E.

(IT) zp € E = Yy € S(wo), 2™} — g, ™ € 9.f(2(™), YA > 0, Gy(w0, 2™, 07 N) <
0 Vm € N.

Remark 3. It is easy to show that the condition 3A > 0, in Theorem 8(I) can be
replaced by the weaker condition 3\ > 0,, if

g #0, = M #£0.
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1 Introduction

In this paper, we consider the following multiobjective semi-infinite programming prob-
lem (MSIP):

() inf (fi(2), fa(2), ..., fo(2))
s.t. g(x) <0 teT, z € R",

where f;, i € I :={1,2,...,p} and ¢, t € T are locally Lipschitz functions from R"
to R, and the index set T # () is arbitrary, not necessarily finite. When T is finite, (P)
is a multiobjective optimization problem, and when p = 1 and T is infinite, (P) is a
semi-infinite optimization problem.

Necessary and sufficient optimality conditions for efficient, weakly efficient, and
isolated efficient solutions of MSIP have been studied by many authors; see for instance
[13, 18] in linear case, [12, 14] in convex case, [5] in smooth case, and [7, 11, 19, 20, 21, 23]
in locally Lipshitz case. In almost all of the mentioned articles, the Karush-Kuhn-
Tucker (KKT) type necessary conditions are justified for MSIPs under some constraint
qualifications, and sufficient conditions are proved under several kinds of generalized
convexity and generalized invexity. We know that the most general generalization of
concept of invexity is (®, p)—invexity, has been introduced by Caristi et al. in [5, 6] for
smooth functions. Antczak and his coauthor presented the concept of (P, p)—invexity
for nonsmooth functions [1, 2], and Kanzi [19] extended this definition to a wider range
of nonsmooth functions. In the present paper, we will use this most general form of
(®, p)—invexity.

On the other hand, the gap function for mathematical programming problems has
been studied in various publications in recent years. Hearn [17] introduced a gap
function for scalar convex optimization problems. Chen et al. [9] investigated a gap
function for differentiable multiobjective optimization problems. The weak point of the
gap function introduced in [9] is set-valued, i.e., brings a set to any point. Recently,
Caristi et al. [4] can present some scalar-valued gap functions to nonsmooth multiob-
jective problems. Given the complexity of set-valued maps, these new single-valued gap
functions are very useful. The defect gap functions introduced in [4] is that they work
only for problems with convex\quasiconvex data. In the present article, this weakness
will be resolved. For this end, we will define a gap function for nonsmooth MSIP, using
(®, p)—invexity. Of course, it should be mentioned that, in this study, if we replace
“(®, p)—invex” by “invex”, the results will still be original which are the extensions of
the existing theorems in mentioned articles.

We organize the paper as follows. In the next section, we provide the preliminary

results to be used in the rest of the paper. In Section 3, we first overview some necessary
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optimality conditions for weakly efficient and efficient solutions, that are presented in
literatures. Then, we state a similar result for properly efficien solutions. In Section 4,
we introduce a new gap function involving (®, p)—invexity, and present some charac-
terizations for efficient, weakly efficient and properly efficient solutions of MSIP respect
to considered gap function, unlike of other papers that consider separate gap functions

for each kind of efficiency.

2 Preliminaries

In this section, we briefly overview some notions of nonsmooth analysis widely used in
formulations and proofs of main results of the paper. For more details, discussion, and
applications see [8].

As usual, (z,y) stands for the standard inner product z,y € R". Given z,y € R",
we write z < y (resp. ¢ < y) when x # y and z; < y; (resp. x; < y;) foralli € {1,...,n}.
The zero vector of R" is denoted by 0,,.

Given a nonempty set A C R, we denote by A? and A~, the polar and strictly
polar cones of A, defined respectively by

A% :={x € R"| (z,a) <0, Vac A},
A" ={z eR"| (z,a) <0, Vaec A}

Also, we denote the cotingent tangent cone of A at & € A by T'(A4, ), i.e.,

T(Az):= {v € R"| 3t, | 0, Jv, — v such that & + t,v, € A Vr € N}.

Let £ € R™ and let ¢ : R® — R be a locally Lipschitz function. The Clarke directional
derivative of ¢ at & in the direction v € R™, and the Clarke subdifferential of ¢ at &

are respectively given by

t —
(@ 0) = lim sup oy +tv) — o(y)
Y, t10 t

and
dep(2) == {E€ € R™ | (¢,v) < ©(&;v)  forallwe R"}.

The Clarke subdifferential is a natural generalization of the classical derivative since it
is known that when function ¢ is continuously differentiable at z, 0.¢0(2) = {Vp(2)}.
Moreover when a function ¢ is convex, the Clarke subdifferential coincides with dp(%),

the subdifferential in the sense of convex analysis, i.e.
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Op() = {EeR" | p(x) > (&) + ({2 — &) VzeR".
It is worth to observe that 0. (%) is a nonempty, convex, and compact subset of R™.

Theorem 1. Let ©¥; and 92 be locally Lipschitz functions from R™ to R and & € R"™.
Then,
a0(0”91 + ﬁﬁQ)(i) - 0480191(.%) + 560192(‘%)’ \V/Ol, ﬂ €R.

3 KKT Type Necessary Conditions

At starting point of this section, we observe that the feasible set of (P) is denoted by
M, i.e.,
M:={xeR" | g(x) <0, VteT}.

For each & € M, set
Fy:=Jo.fi(2), and Gi:= |J dcqu(d),
icl teT(2)

where, T'(Z) denotes the set of active constraints at Z,
T(z):={teT|g(z)=0}.

There exist different kind of optimality, named efficiency, in multiobjective optimiza-
tion. A feasible point Z is said to be efficient solution [resp. weakly efficient solution]
for (P) if and only if there is no x € M satisfying f(x) < f(Z) [resp. f(z) < f(&)].
As well as in the classical case, the KKT type optimality conditions hold at efficient
and weakly efficient solutions of (P), provided some constraint qualifications (CQ) are
satisfied. For example, Kanzi [20] emphasized on weakly efficiency, and introduced the

CCQ as,

Definition 1. Let & € S. We say that (P) satisfies the Cottle constraint qualification
(CCQ, in brief) at &, if J is a compact subset of RP, and the function (x,t) — g(z) is

upper semicontinuous on R"™ x T', and 0°g;(x) is an upper semicontinuous mapping in

t for each z, and (G3z)~ # 0.
Then, following KKT type theorem is proved in [20, Theorem 3.6].

Theorem 2. (KKT Necessary Condition) Let & € M be a weakly efficient solution of
(P) and CCQ holds at #. Then there exist o; > 0 (for ¢ € I) with > ", a; = 1, and
Br >0 (for t € T(z)) with 5; # 0 for at most finitely many indices, such that

p
0€ > idefi@) + Y Bi0cgu(d).
=1

teT(2)
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Caristi and Kanzi [7] considered the efficient solutions of (P), considered a Meda
type CQ as,

(MCQ):  (Fz)°N(Gs)° C ﬂT(Qi,fv%

where, Q'(%) := {x e M| filx) < filz) Vie I\{z}}, and in [7, Theorem 3.3| proved
the strong KKT type result as follows.

Theorem 3. (Strong KKT Necessary Condition). Let & be an efficient solution of (P).
If in addition, (MCQ) and the condition

(Fa%)o \ {On} C U (acfl(i'))ia (1)

i=i
hold at z, then there exist scalars «; > 0, ¢ € I, and an integer £ > 0, and a set
{t1,te,...,tx} CT(&), and scalars ;. > 0 for r € {1,2,...,k}, such that

p k
06> idefi(®)+ > Brdegr, ().
i=1 r=1

Also, Kanzi in [19, Theorem 3| (resp. [19, Theorem 4]) presented the KKT (resp.
strong KKT) condition under Zangwill (resp. strong Zangmill) CQ, that introduced
there.

Everywhere in the above, we consider the efficiency and weakly efficiency for (P).
Proper efficiency is a very important notion used in studying multiobjective optimiza-
tion problems. There are many definitions of proper efficiency in literature, as those
introduced by Geoffrion, Benson, Borwein, and Henig; see [16] for a comparison among
the main definitions of this notion. We recall the following definition from [15, pp.
110].

Definition 2. A point & € M is called a properly efficient solution of (P) when there
exists a A > 0, such that

A F(@)) < (A f(2)), Vo € M.

As proved in [10, Section 3], the above definition of proper efficiency is weaker than
its other definitions (under some assumed conditions). The following theorem gives us

a strong KKT condition for properly efficient solutions of (P).

Theorem 4. (Strong KKT Necessary Condition) Let Z be a properly efficient solution
of (P), and CCQ holds at #. Then, there exist a; > 0 (for ¢ € I) with >* o =1,
and ; > 0, (for t € T(&)), with S, # 0 for finitely many indexes, such that

p
0€> idefi(@) + Y Bi0egu(@).
=1

teT(2)
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Proof. By the definition of proper efficiency, there exist some scalars A; > 0 (for ¢ € I)
such that

P P
ZAifi(fi‘) < Z)\ifi(x)a Vo e M.
i=1 i=1
This means that 2 is a minimizer of the following scalar semi-infinite problem:
P

Applying Theorem 2, we get

00 € 70:( I N0)) @) + D pmdeanl@). 2)

tET(2)

for some 7 > 0 and pus > 0, (t € T(&)), with gy # 0 for finitely many indexes. Since

Theorem 1 guaranties that
P P
0c( Do NF()) (@) € D NOfi(@),
i=1 i=1
(2) concludes that

p
On €7 Y NOefi(&) + Y 1u0egi(&).
i=1

tET(2)

Dividing both sides of above inclusion to 7Y %_; A;, we conclude that

p
Ai 5 Hit A

teT ()
For each i € I and t € T'(Z) take
Ai [t
o= =, and Bii=-——5—.
' 1 A Tor 1 Ai
Since ¥ ; a; =1, (3) completes the proof. O

We illustrate the application of Theorem 4 by an example.

Example 1. Consider the following problem:

inf (331, JZQ)

3
s.t. (cost)zy + (sint)zy <0, t€ [m, %]

It is easy to check that
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M = {(x1,22) € R* | 2% + 23 <1} + {(x1,22) €ER? | 21 >0, 29 > 0}.

We consider the feasible point & = (cos «, sin o) for some « € (71', %’r)

Since fl(xla$2) =1, fQ(fL‘l,.’EQ) = x2, gt(l‘lng) = (COSt)x1+(Sint)x27 and T = [7'(' 371-])

' 4
we get

T(z) ={a}, Gz = {(cosa,sin )}, F; ={(1,0),(0,1)}.

Therefore, according to Theorem 4, we conclude % is a properly efficient solution for

the problem.

4 Characterization via gap function

This section is started by a definition from [19].

Definition 3. Suppose that the functions ® : R" xR xR" xR — R and p : R* xR" —
R, and the nonempty set X C R" are given. A locally Lipschitz function A : R™ — R
is said to be (P, p)—invex at z* € X with respect to X, if for each x € X one has:

<I>(:L‘,x*, On,r) >0 forallr>0, (4)
O(x,z%,.,.) is convex on R" x R, (5)
@(:c,a:*,ﬁ,p(a:, x*)) < h(x) — h(z¥), V&€ INh(x¥). (6)

Notice that this definition is more general that [1, Definition 4] and [2, Definition
6], since there considered p are real number and here is a function. Everywhere in the
following, we will assume X equals to feasible solution of (P), i.e., X = M, but for the
sake of simplicity we will omit to mention X.

Since 1982, an important function respect to convex optimization problems was
defined by Hearn [17]. As mentioned in introduction, all existing literatures the gap
function was defined for optimization programming with convex or quasiconvex data.

Now, we define the gap function for nonsmooth MSIPs with (®, p)-invex functions.
Definition 4. Suppose that the f; functions are (®, p;)-invex at x € M. For each

p p
§=(&,....&) € [[0cfilx) and A= (A1,...,Ap) > 0, with » X =1,
=1

= 1=1

the gap function of problem (P) is defined as

p
T(J:aé?A) = inf {Z)\Z(I)(yaxaéﬂpl(yvx))} .
i=1

yeM
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It is worth mentioning that all the gap functions considered in [7, 9, 12, 17] are
special cases of above gap function. At the rest of this section, we will characterize

efficient, weakly efficient, and properly efficient solutions of (P) utilizing Y (z,&, \).
Theorem 5. Let the f; function be (®, p;)-invex at & € M for each i € I.

(a) If T(i‘,f, 5\) = 0 for some & := (él,...,fp) € [17_, 0.fi(#) and A= (5\1, CeAp) =
0p with Y7 | A; = 1, then & is a weak efficient solution for (P).

(b) If T(2,€,\) = 0 for some € := (£1,...,&) € [T, Qe fi() and X := (Ai,...,\p) >
0, with Y7 , A; = 1, then & is an efficient solution for (P).

Proof. (a) By contradiction assume that Y(,&,\) = 0 while & is not a weak efficient
solution for (P). Then, we can find a feasible point zy € M such that f;(xg) < fi(%)
for all ¢ € I. Thus, the (@, p;)-invexity of f; functions implies that

O (0, 2, &1, pi(20,2)) < filwo) — fi(#) <0, Vi€l (7)
On the other hand, since > 0Op, then there exists an index k € I such that
Me >0, and N >0 Viell{k}. (8)
Clearly, (7) and (8) imply
Xk‘b(xo,i,fk,pk(xo,i)) <0, and X\ (I)(J}(],.I‘ fz,pl(:no, )) <0 Viel\{k}.

Hence,

) ¢(x0aj7éi7pi($07i')) < 07

W.Mh@
—
3/

which consequences that Y (z, f , 5\) < 0. This contradiction completes the proof. (b) If
T(i,€,A) = 0 while & is not an efficient solution for (P), there exist some zg € M and
some index k € I such that

fi(zo) < fi(2), Viel, and fi(wo) < fu(2).

According to the above inequalities, the (@, p;)-invexity of f; functions, and the as-

sumption of > 0p, we get

p p
ZA anx 517/01 wOa S Z 7 fz J?() (j;)) <0.
i=1 =1

So, Y(z, é, 5\) < 0, which contradicts the assumption. O
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Since properly efficientcy is stronger than weakly efficiency and efficiency, the fol-
lowing sufficient condition needs some assumptions which are stronger than Theorem

4, containing equality of p; functions for each ¢ € I.

Theorem 6. Suppose that for each i € I, the f; function is (P, p)-invex at & € M.
If there exists a & := (51, .. ,ép) € [TX., 8.fi(£) such that T(:)ﬁ",é, A) =0 for all \ :=
(A, .3 Ap) > 0p with 7P A; =1, then  is a proper efficient solution for (P).

Proof. If % is not a proper efficient solution for (P), we can find some z9 € M and
A= (A}, ..., A5) > 0, such that

" \p
P p
D X filmo) < )AL fi(E).
i=1 i=1
we conclude that » 7, Xi =1, and
p P
Z i(20) Z fi(#). (9)

We claim that Y%, )Tifi isa (@, p)—invex function at #. Suppose that ¢ € >°F )Ti(?cfi(ic)

is given. It is enough to show that

Taking )TZ = )\71‘)\*,

i=1""

p p
®(z,%,¢, pla, ) < Z Z (%), VYoe M. (10)

For this end, we recall from Theorem 1 that ¢ = Y7, \ G for some (; € O.f;(z). The
(®, p)—invexity of f; functions at & and the convexity of ®(z,Z,.,.) imply that

®(x,4,C,p(x,7)) = @ (a: 2, Z NG, Zp: Nip(z, :ﬁ))

IN
2

K
—
&
&
Ly
2
8

8
=

p p p
< D N(f@) = F@) =D Nifilw) = D> Nifi(@).
' i=1 i=1
Thus, (10) is proved. Now, (9) and the (®, p)—invexity of > ©_; Xifi at & conclude that
p
x() Z j?

This means T(i,f , X) < 0, which contradicts the assumption. ]

(I?(),IL' §17 (.Z'(), )) S

I Mw
I M»a

The following new definition will be required in the sequel.
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Definition 5. A locally Lipschitz function i : R” — R is said to be “symmetric
(®, p)-invex” at ¥ € R™ if

o s (P, p)-invex at Z,
o O(7,7,&,p(%,7)) =0 for all £ € I.A(T).

h(.) is said to be symmetric (®, p)-invex, if it is symmetric (®, p)-invex at each point

in its domain.

We recall from [23] that for r-convex (r € Ry ) functions we have p(x,y) := r and

(I)(xayagvp) = <€7y - $> +er - y”2

So, r-convex functions are symmetric (P, p)-invex. Also, the skew invex functions,
which are defined in [22], are examples for nonconvex symmetric (®, p)-invex functions.
The following example shows that a symmetric (P, p)-invexity function does not need

to be invex.

Example 2. Consider a function ® : R x R x R x R — R defined by

*%Iﬂf?’ -y’ if y#0,
Yy
O(x,y,u,w) :=
w|z?| if y=0.

Let z and y be arbitrary elements of R. Since ®(z,v,.,.) is a linear function and

0 if  y#0,
r]a:3| if y=0,

O(x,y,0,r) = {

the conditions (12) and (26) hold. Take p(z,y) := —1 for all z,y € R, and h(z) := z3.
Since A(.) is continuously differentiable on R, then d.A(y) = {3y*}. Now, owing to

_ {—w3—y3| if y#0,

we understand that A(.) is a (@, p)—invex function at each y € R with respect to R.
Also, th equality of

<I>(y7 Y, 3y2a _1) = 07

shows that A(.) is a symmetric (®, p)—invex function at each y € R. Furthermore, as

it follows by [3, Theorem 1], A(.) is not an invex function on R.
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Theorem 7. Let & € M be a weakly efficient solution of (P) and CCQ holds at z.
Suppose that for each ¢ € I the f; function is symmetric (P, p;)-invex at Z, and for each

t € T(z) the g, function is (P, py)-invex at z, satisfying
pr(y,2) >0, Vre IUT(z), Yy € M. (11)

Then, there exist & := (&1,...,&) € [[h, 0.fi(2) and X := (A1,...,Ap) > 0, with
>°P 1 A =1, such that Y(z,£,\) = 0.

Proof. According to Theorem 2, we can find some \; > 0 and &; € 0.f;(%) (for ¢ € I)
with Y-, A; = 1, a finite subset T* for T'(), some p; > 0 and § € deg4(Z) (for t € T*),

such that
> N+ Y G = On. (12)
iel teT™*
For each (i,t) € I x T* set
~ )\7, N ot
Aii=————, and ji:=—coF——.

Assume that ¢ € T* and y € M are arbitrarily chosen. Since T C T'(&), the (P, ps)-

invexity of g; implies that
9t(y) <0 =g(2) = (v, 2, G, pu(y,2)) <0, Vye M.

So, by jiz > 0 (for t € T*), we get

> u®(y, &Gy, ) <0, Vye M. (13)
teT*

On the other hand, Definition 3, (11) and (12) conclude that

<I>(y, 00, > Xipi(y, ) + D fupe(y, :&))

iel teT™

= (g, > M+ D G Nipily, )+ Y fupi(y, &) ) nonumber (14)

el teT™* el teT™*

Zj‘l(b(yvi‘aglapz(y’j)) + Z ﬂt‘p(yviactvpt(yai‘))v (15)

i€l teT*

0

IN

IN

where (15) is implied by >, ; 5‘i+ZtGT* iz = 1 and convexity of ®(y, z, .,.). Combining
the last inequality and (13), yields

i€l i€l

Since the symmetric (®, p;)-invexity of f; functions at & concludes



24 A General Scalar-Valued Gap Function ... / COAM, 3(2), Autumn-Winter 2018

Z )\1(1)(5&’ j?fl)pl(iai)) = Oa

i€l

the inequality (16) deduces that

p
=1

yeM

as requested. ]

Applying Theorems 3 and 4, and repeating the proof of Theorem 7, we can state

the following theorem for efficient and properly efficient solutions of (P), respectively.

Theorem 8. Assume that & € Mis an efficient solution of (P), the (MCQ) is satisfied
at Z, and (1) holds. Suppose that for each i € I the f; function is symmetric (®, p;)-
invex at Z, and for each ¢ € T'(2) the g; function is (®, p;)-invex at Z, satisfying (11).
Then, there exist & := (&1,...,&) € [[ho; 0.fi(2) and A := (A1,...,)\p) > 0, with
P X =1, such that Y(Z,£,\) = 0.

Theorem 9. Suppose that & is a properly efficient solution for (P) and CCQ holds at
&. Suppose that for each ¢ € I the f; function is symmetric (®, p;)-invex at z, and for
each t € T(z) the g; function is (P, p;)-invex at &, satisfying (11). Then, there exist
€= (&, ,&) € [1, 0cfi() and X := (A1,...,\p) > 0, with 3P \; = 1, such that
T(#,6,\) = 0.

We note that the difference between the Theorem7 with Theorems 8 and 9 is that
in the first we have A > 0,,, whereas in the latter ones we have A > 0,. Also, it is worth

mentioning that the presented results generalize

5 Conclusion

In this paper, we considered the class of nonsmooth multiobjective optimization prob-
lems with arbitrary many constraints. We proved a Karush-Kuhn-Tucker type optimal-
ity condition for properly efficient solutions of the problems. We introduced a new gap
function that can characterizes efficient, weakly efficient, and properly efficient solutions

the problem, under (®, p;)-invexity and symmetric (®, p;)-invexity assumptions.
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1 Introduction

Radial basis functions (RBFs) interpolation is a technique for representing a function starting
with data on scattered points. This technique first appears in the literature as a method for
scattered data interpolation, and interest in this method exploded after the review of Franke
[1], who found it to be the most impressive of the many methods he tested. Later, Kansa [2, 3]
proposed a scheme for the estimation of partial derivatives using RBFs. The main advantage
of radial basis functions methods is the meshless characteristic of them. The use of radial
basis functions as a meshless method for the numerical solution of partial differential equations
(PDESs) is based on the Collocation method. These methods have recently received a great deal
of attention from researchers [4, 5, 6, 7, 8, 9].

Recently, RBFs methods were extended to solve various ordinary and partial differential
equations including the high order ordinary differential equations [10], second-order parabolic
equation with nonlocal boundary conditions [11, 12], the nonlinear Fokker-Planck equation [13],
optimal control problems [14], the viscous flow over nonlinearly stretching sheet with chemical
reaction, heat transfer and magnetic field [15], the unsteady flow of gas in a semi-infinite porous
medium [16] nonlinear differential and integral equations [17, 18, 19], Second-order hyperbolic
telegraph equation [20], the solution of 2D biharmonic equations [21], the case of heat transfer

equations [22] and so on [23, 24, 25].

An RBF %(|x — x;||) : RT — R depends on the separation between a field point x € R?
and the data centers x; , for ¢ = 1,2,..., N, and N data points. The interpolants are classed
as radial due to their spherical symmetry around centers x;, where ||.|| is the Euclidean norm.
One of the most powerful interpolation method with analytic two-dimensional test function is
the RBFs method based on multiquadric (MQ) basis function

W(r) =12+ e, (1)

suggested by R.L. Hardy [26], where r = ||x — x;|| and ¢ is a free positive parameter, often
referred to as the shape parameter, to be specified by the user. Madych and Nelson [27] showed
that interpolation with MQ is exponentially convergent based on reproducing kernel Hilbert
space. Convergence property of the MQ has been also showed by Buhman [28, 29]. Too large or
too small shape parameter ¢ in (1) make the MQ too flat or too peaked. Despite many research
works presented to finding algorithms for selecting the optimum values of ¢ [30, 31, 32, 33, 34],
the optimal choice of shape parameter is an open problem which is still under intensive inves-
tigation.

The interested reader is referred to the recent books and paper by Buhmann [28, ?] and Wend-
land [35] for more basic details about RBFs, compactly and globally supported and convergence
rate of the radial basis functions.

Center nodes {x;}¥ | are not necessarily structured, that is, they can have an arbitrary distri-
bution. The arbitrary grid structure is one of the major differences between the RBFs methods
and other global methods. Such a mesh-free grid structure yields high flexibility especially
when the domain is irregular. Finding the Center nodes in RBF methods is too important
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an open problem. In this work, we aim to select the best center nodes based on convergence,
condition number of interpolation matrix, time and memory with a famous MCDM method
named PROMETHEE.

Today, complex decisions in various conditions are under influence of frequent and different
factors and criteria which have a significant and deniable role in consequence and effects of
decisions and we cannot simply and base of the common methods find response for them but
we should use (hang on to) modern scientific methods. MCDM problem is a well known
branch of decision theory. It has been found in real life decision situations [36, 37, 38, 39].
In general, decision-making is the study of identifying and choosing alternatives based on the
values and preferences of the decision-maker. Making a decision implies that some alternatives
are to be considered, and that one chooses the alternative(s) that possibly best fits with the
goals, objectives, desires and values of the problem. MCDM is a powerful tool used widely
for evaluation and ranking problems containing multiple, usually conflicting, criteria [40], as
how it is in finding the best center nodes in RBF methods. A lot of researchers have devoted
themselves to solve MCDM [41, 42, 43, 44, 45, 46, 47, 48, 49, 50].

Several approaches have been proposed for multicriteria decision and the relevant meth-
ods were developed and applied with more or less success depending on the specific problem
[51]. Among numerous methods of MCDM, The Preference Ranking Organization Method for
Enrichment Evaluation (PROMETHEE) is significantly suitable for ranking applications [40].
PROMETHEE brings together flexibility and simplicity for the user [52] and is quite simple
in conception and application compared to other methods for multicriteria analysis [53]. The
PROMETHEE method and their applications has attracted much attention from academics
and practitioners [54]. It is well adapted to problems where a finite number of alternative
actions are to be ranked considering several, sometimes conflicting, criteria [51]. This method
is a relatively simple ranking method, which is perfectly intelligible for the decision maker and
is accepted as one of the most intuitive MCDM methods [55]. It is one of the best known
and most widely applied outranking method because it follows a transparent computational
procedure and can be easily understood by actors and DMs [56]. The PROMETHEE method
has found a vast scope of application such as logistics and transportation [57, 58], environment
management [59, 60], finance [61, 62], chemistry [63], production planning [64, 65, 66], energy
management [67], service [68, 69], sport [70] and supply chain management [71, 72].

The PROMETHEE model has many advantages, in comparison to other MCDM models,
such as structuring the issue, the amount of data that could be processed, the possibility to
quantify the qualitative values, software support and presentation of the results [73]. Hence
we used PROMETHEE Technique to rank possible alternatives due to its coordination with
the structure of the issue, popularity, vast usage, remarkable outcomes, being easy to use and
professional software.

This paper is arranged as follows: in Section 2, we describe the properties of radial basis
functions. Two approaches based on radial basis functions for approximate the solution of
linear operation by using collocation method are applied. In section 3, the PROMETHEE
methodology is described. we give computational results of numerical experiments with methods
based on preceding sections, to support our theoretical discussion in section 4. The conclusions
are discussed in the final Section.
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2 Radial basis functions

2.1 Definition of radial basis functions

Let RT™ = {x € R,z > 0} be the non-negative half-line and let 1) : RT — R be a continuous

function with (0) > 0. A radial basis function on R? is a function of the form

P(llx = xll) ,

where x, x; € R and ||.|| denotes the Euclidean distance between x and x;s. If one chooses N
points {x;}, in R? then by custom

N
500 = YAk - xil): A ER
=1

is called a radial basis function as well [74].

2.2 RBFs interpolation based on Kansa approach

We now discuss Kansa’s collocation method. Assume we are given a domain Q C R%, and a

linear operator of the form
Llu(x,t) = H(x,t), x€Q,tel0,T), (2)
with initial and boundary conditions

Iul(x) = f(x), x€Q,t=0, (3)
Blu)(x) = g(x,t) , x €00 ,te0,T). (4)

Then we approximate u by radial basis functions as
N
u(®) =Y Np(Ix - %)) (5)
i=1

where X = (x,t). The simplest possible setting is shown in expansion (5). The Collocation
matrix is constructed by matching the differential equation (2) and the initial and boundary

conditions (3) and (4) at the collocation nodes {%;}_, of the form
B[Y]

w1, (6)
(]

A=| 1
L
where the blocks of matrix is generated in Appendix 1.

Kansa’s method is an unsymmetric RBF Collocation method based upon the MQ interpolation
functions. Although the above approach has been applied successfully in several cases [6, 7, 10,
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11, 22, 75], no existence of solution and convergence analysis is available in the literature and,
for some cases, it has been reported that the resulting matrix was extremely ill-conditioned.
The condition number of the above interpolation matrix for smooth RBFs like Gaussian or
multiquadrics are extremely large.

Several techniques have been proposed to improve the conditioning of the coefficient matrix
and the solution accuracy. Fasshauer [76] suggested an alternative approach to the unsymmetric
scheme based on the Hermite interpolation property of the radial basis functions. The advantage
of the Hermite-based approach is that the matrix resulting from the scheme is symmetric, as
opposed to the completely unstructured matrix of the same size resulting from unsymmetric
schemes.

2.3 RBFs interpolation based on Hermite approach

It is possible to represent the solution u of the above boundary value problem in terms of the
following Hermite RBF (HRBF) interpolation:

u®) = SN NBIIR - &ill) + S A (1%~ %)
XN v ML (% - %)

where Ny and N1 — Ny denote the number of nodes on 92 x [0, T) and 2 x {0} and N — N1 — Ny
the number of internal nodes. In the above expression L*, I* and B* are the operators used
in (2), (3) and (4), but acting on 1) viewed as a function of the second argument %; [76]. This

expansion for u(%) leads to a collocation matrix A which is of the form

Bprw)] B[] B[]
[B [\I’H I[I*[\I/]] I[L*[\I/]] , (7)

A= | 1[B*
L[] L[] (L[]

where the blocks generated in Appendix 2.

The matrix (7) is of the same type as the scattered HRBF interpolation matrices and thus non-
singular as long as is 1 chosen appropriately. A major point in favour of the HRBF approach is
that the matrix resulting from the scheme is symmetric, as opposed to the completely unstruc-
tured matrix (6) of the same size. The convergence proof for HRBF interpolation was given
by Wu [77] who also recently proved the convergence of this approach when solving PDEs [78];
see also [79]. A comparison analysis between unsymmetric and symmetric radial basis function
collocation methods for the numerical solution of partial differential equations is described in

paper by Power [80].

3 PROMETHEE Methodology

PROMETHEE is a MCDM method developed by Brans et al. [81]. It is a ranking method quite
simple in conception and application compared to other methods for multi-criteria analysis [82].
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Let A be a set of alternatives and g;(a) represent the value of criterion g;(a), j =1,2,---,J of
alternative a € A. As the first step in PROMETHEE a preference function Fj(a,b) is defined
for each pair of actions for criterion g; .Assuming that more is preferred to less. Where ¢; and

p; are indifference and preference thresholds for ith criterion respectively.
Fj(a,b) =0 if gj(a) —g;(b) < g,

Fj(a,) =1  if g;(a) —g;(b) > p;
0<Fj(a,b) <1 if q; <gj(a)—g;(b) <p;

Different shapes (six types) for F; have been suggested. If a is better than b according to jth
criterion, Fj(a,b) > 0, otherwise F}j(a,b) = 0. Using the weights w; assigned to each criterion

(where Y w; = 1), one can determine the aggregated preference indicator as follows:

(a,b) = > w; f(a,b).

If the number of alternatives is more than two, overall ranking is done by aggregating the
measures of pair wise comparisons. For each alternative a € A, the following two outranking

dominance flows can be obtained with respect to all the other alternatives x € A:

1
ot (a) = — ;H(aw) leaving flow.

The leaving flow is the sum of the values of the arcs leaving node a and therefore provide a

measure of the outranking character of a. The higher ¢ ™ (a), is the better alternative a,

1

- = II teri flow.

v~ (a) 7 Z (x,a) entering flow
r€A

The entering flow measures the outranked character. The smaller ¢~ (a), is the better alter-

native a [83]. For each alternative a, it is obvious that we can also determine the net flow for

each criterion separately. Let us define the net flow for criterion g; as follows:

p;(a) = ﬁ (Fj(a,z) — Fj(z,a)).
T€A

@;(a) quantifies the position of alternative a according to criterion j with respect to all the
other alternatives in the set A. The larger the single criterion net flow the better alternative a
on criterion g;.

According to PROMETHEE 1, action a is superior to action b if the leaving flow of a is greater

than the leaving flow of b and entering flow of a is smaller than the entering flow of b.

a outranks b if: ¢t(a)>pT(b) and ¢ (a) < o (b).

Equality in ¢+ and ¢~ indicates indifference among the two compared alternatives. Two
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alternatives are considered incomparable if alternative a is better than alternative b in terms of

leaving flow, while the entering flows indicate the reverse [82]:
[p*(a) > ¢*(b) and ¢~ (a) > 7 (b)] or [pT(a) < ' (b) and ¢~ (a) <@~ (b))

PROMETHEE II provides a complete ranking of the alternatives from the best to the worst
one by

©(a) = ¢"(a) — ¢~ (a).

The implementation of PROMETHEE requires two additional types of information, namely:
(1) information on the relative importance that is the weights of the criteria considered, (2)
information on the decision-maker s preference function, which he/she uses when comparing the
contribution of the alternatives in terms of each separate criterion [84]. This function is used to
compute the degree of preference associated to the best action in case of pairwise comparisons
[85]. When we compare two alternatives a and B, we must be able to express the result of
these comparisons in terms of preference. Then we consider a preference function ® [84]. There
are six basics types of preference functions proposed by Brans and Vincke [86]. with the aim
of enabling the selection of specific preference function, which can be listed as usual function,

U-shape function, V-shape function, level function, linear function and Gaussian function.

4 Algorithm explain with examples

The proposed approach is applied in two partial differential equations. we aim to choose best
centers nodes of RBFs by applying Kansa and HRBF collocation method. Finding the best
nodes between the set of nodes for example: uniform, cartesian, Chebyshev for these methods
is an open problem. Thus ranking or choosing the appropriate methods by using suitable center
nodes is so important in RBFs approximation.

In order to learn more about using of mentioned techniques in real environment, we impediment
the proposed algorithms steps with a concrete examples.

In the process of using the model, we perform the three following steps:

1st step: Determination of fundamental criteria and Alternatives.

2nd step: Rating of cases with the help of PROMETHEE technique.

3rd step: Analyzing of consequences.

4.1 Determination of fundamental criteria and Alternatives

Here, two following classical heat equation is solved by using Kansa and HRBF method with
MQ function.
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ur(x,t) = Vu(x,t) + f(x,1), in QxJ,
U(X, O) = g(X), x € Q,
Bu(x,t) = h(x,1t), on 00 x J,

Example 1: the Homogeneous one-dimensional case:
g(z1) = sin(zy), O<zi<m, t>0

u(0,¢t) =0, u(m,t) = 0.

Exact solution: wu(xp,t)=sin(zy)e 2.

Example 2: the Inhomogeneous two-dimensional case:

f(z1,9,t) = sin(wzy) sin(zg)e ™" — 4,

g(x1,20) = sin(xy) sin(ze) + 23 + 22, 0< 29 <7, >0,
u(0, z9,t) = 23, u(21,0,t) = 23,
u(m, o, t) = 3 4 72, u(zy,m,t) = 23 4+ 72

1
Exact solution: wu(xy,xs,t) = sin(zi)sin(zs)e™" 4+ 22 + 22 .

The error is root mean square (RMS) and obtained as:

R (u(xks t) — (s )
RMS = \/ k i .

where u(xg, t) and uy (X, tx) are achieved by exact and approximate solution on (xy, tx), and
M is number of test points. Also we consider shape parameter equals one for the both examples
and all cases.
Tables (1) and (2) show determination of fundamental criteria and Alternatives for each two
examples.

Tables (3) and (4) show grading of cases in example 1 for N = 36, 100. Table (5) shows

Table 1: Fundamental criteria

Label Cy Cs C3

Criteria Error Condition Number Time.Memory

Table 2: Alternatives in nodes and methods

Label A1 A2 Ag A4 A5
Kansa nodes Uniform Grid Legendre Chebyshev LGL Cartesian
Label A6 A7 AS Ag Al()

HRBF nodes Uniform Grid Legendre Chebyshev LGL Cartesian

grading of cases in example 2 for N = 512.
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Table 3: Grading of cases in example 1 for N = 36.

N Cl CQ CS
Min/Max Min Min Min
Preference Function Usual Usual Usual
Unit Numerical x 1017 Numerical x10~° Kbs
Ay 580 370 337.04
Ag 480 300 365.75
Asg 410 170 323.13
Ay 330 105 323.10
As 500 100 328.99
Ag 10 2.9 373.09
Ay 5 3.6 310.40
Ag 4 2.6 328.18
Ag 5 1.5 346.19
Aqp 7 1.2 324.72
Table 4: Grading of cases in example 1 for N = 100.
N (o Cs Cs
Min/Max Min Min Min
Preference Function Usual Usual Usual
Unit Numerical x 1017 Numerical x 10~ Kbs
Aq 4.100 190 1109.12
Ao 2.700 340 1409.06
As 2.600 390 1249.81
Ay 0.520 120 1285.24
As 20.00 17000 1124.74
Ag 0.031 15.0 1457.08
Az 0.010 1.7 2061.45
Ag 0.003 1.1 1985.16
Ag 0.004 12.3 1984.85
Aqg 0.090 13.0 2084.07

4.2 Rating of the cases with the help of PROMETHEE technique

In our study, one of the most frequently used preference function type in the literature and the

most suitable preference function type to the characteristic of our problem, the usual function

(it was introduced at Section 3) is selected for the evaluation. In next step we should evaluate
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Table 5: Grading of cases in example 2 for N = 512.

N Ch Co Cs

Min/Max Min Min Min
Preference Function Usual Usual Usual
Unit Numerical x 1077 Numerical x 1079 Kbs
Ay 500.00 810.0 5400

Ag 37.00 230.0 5914

As 71.00 130.0 6101
Ay 10.00 110.0 6010
As 83.00 510.0 5913

Ag 3.20 9.7 6310

A7 0.31 3.4 6897

Ag 0.48 1.2 6911

Ag 0.17 1.1 7110
Aqg 0.87 4.7 6981

them by analyzing the cases in each criterion, and finally by correct rating of cases, choose the
best case. For this purpose, he can perform steps of PROMETHEE technique to the end or for
ease of calculation; he can use the relevant software like DECISION LAB.

After completing the grading table, we can easily derive the rating consequences of the cases
by using of PROMETHEE technique, Also we can evaluate and analyze the consequences by
using of graphical capabilities of the software DECISION LAB, like Gaia planes.

Figure 1 displays ranking of cases with the help of PROMETHEE II technique with N = 36
for example 1. This ranking shows that HRBF method by using Legendre points are the most
suitable choices as RBF methods and center nodes. The output figure listing the outsourcers
with N = 100 for example 1 is given in Figure 2. As seen in the figure, the best choice in the
center nodes may be changed in big number of nodes, but HRBF is the more appropriate than
Kansa’s method yet. Figure 3 shows PROMETHEE II output for all two scenarios N = 36
and N = 100. This ranking shows that HRBF method by using Chebyshev points as center
nodes is the best choice. In Figure 4, the outsourcers are listed with N = 512 for example 2.
This ranking shows that HRBF method by using Legendre or Legendre-Gauss-Lobatto (LGL)
points as center nodes are the most suitable choices. Moreover, The geometrical analysis for
interactive aid (GAIA) plane which displays the relative position of the alternatives graphically,

in terms of contributions to the various criteria is given in Figures 5, 6 and 7.



F. Hadinejad, S. Kazem/ COAM, 3(2), Autumn-Winter 2018 37

1] 3 | 5 | 7| 9|
a7 &3 23 5 X
£ 059 = _ 030 o1 £ 013 £ 078

5 ] 7] 3]
A1 43 A5
* 004 = 019 041

oA N

6 ] 8 |
A1 &2
o ® 01 ® 033
A7
+ 004

Figure 2: Example 1: Rating of cases with the help of PROMETHEE II technique with N = 100.
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Figure 3: Example 1: PROMETHEE II output: final scores of Alternatives.
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Figure 4: Example 2: Rating of cases with the help of PROMETHEE II technique with N = 512.

The GAIA plane was used in order to determine discriminating power of each criterion,
aspects of correspondence and conflicts as well as the quality of each alternative by each crite-
rion. Alternatives are presented by triangles and criteria by axes with square ends. Eccentric
position of square of the criterion represents the volume of influence of that criterion, while
correspondence between some criteria is defined by approximately the same direction of axe of
those criteria. Criteria vectors expressing similar preferences on the data are oriented in the

same direction, while conflicting criteria are pointing in opposite directions. The length of each
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Figure 5: Example 1: Gaia planes with N = 36.

Figure 6: Example 1: Gaia planes with N = 100.

Figure 7: Example 2: Gaia planes with N = 512.

vector is a measure of its power in options’ differentiation. Vector ¢ (decision axis) represents
the direction of the compromise derived from the weights assignment.
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4.3 consequences analysis with the help of DECISION LAB soft ware

Despite we can use potential adverse of the software in analyzing the sensitivity and determi-
nation of effectiveness of criteria validity. This capability help decision maker to observe the
results of ranking when wights of criteria changed. For example, because of importance of the
error in function approximations, the following figures show the consequences of rating of cases
in 2 different forms with validities changed in first criteria.

Figure 8 displays of the cases according to the first weights of the criteria. Figure 9 shows of

the cases according to the increase weight first criteria (0.33 to 0.50).

Walking Weights
&
09
0.0
A4 AT A8 A9 A10
-0.9
Error j

Error
Condition Number

Time & Memory

0% 10% 20% 30% 0% 50% 50% 70% 30% 90%  100%
Set Equal | Reset | |
M

PROMETHEE 2 Complete Ranking ] PROMETHEE 1 Partial Ranking ]
7] 9 |
5 &
¥  -0.33 £ 078

| 8 |
58 2
.19 = 070

080 0.00 080

Figure 8: Example 1: Position of the cases according to the first weights of the criteria.
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Walking Weights
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Time & Memory 25%
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1] 3 | 5 | 7] 9 |
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% 0.67 e 0.50 o 0.06 £ 017 % 067

Figure 9: Example 1: Position of the cases according to the increase weight first criteria (0.33 to
0.50).

As observed, by changing the validity of the criteria, rating of the cases totally will be
changed, so the applicants can evaluate the consequences of the factors validities changed in
the final rating of the cases by using this method and also evaluate the effectiveness of each

criterion.

5 Conclusions

Humans always are deciding in different conditions of their life and follow to find an appropriate
solution for their problems; but decision making process is sometimes very complicated and
necessity to assistance and counseling is unavoidable. So in the recent years, mathematical
methods and knowledge of computer, as a helping decision making system has helped decision
maker and create new branches and methods like MCDM techniques and decision support
systems. Thus, we has used these technique in this research to optimize decision making of
selecting the best radial basis functions methods and centers nodes.

Here, Two methods based on radial basis functions for approximate the solution of partial

differential equation by using collocation method are applied. By choosing five sets of center
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nodes: Uniform grid, Cartesian, Chebyshev, Legendre and LGL as Alternatives and achieving
the error, Condition number of interpolation matrix and memory time as criteria, rating of
cases with the help of PROMETHEE II technique is obtained. This ranking shows that Hermite
interpolation by using non-uniform nodes as center nodes is appropriate when we applied RBF
methods for solving partial differential equations.
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Appendix 1.
B = Bl(I[%; —%il) , %, €02 x[0,T) % € 2x[0,T),
I = TI(I% = &ll), - %5 € 2x {0}, % €2 x[0,T),
LW = LYJ(I1%; = %ill) , % € 2 x[0,T) , % € 2 x[0,T) .

Here we identify the collocation points same as center points. Q° is interior of 2. The problem
is well-poses if the linear system AA = C' has unique solution [76]. C' is defined of the form

9(%;)
C=| f&) | - (8)
H(%;)

We note that a change in boundary conditions (4) is as simple as changing rows in matrix A in
(6) as well as on the right hand side C in (8).
Appendix 2.

BB*[¥])],, = BB [¥]](I% —%ill) ,  %;,% € 02 % [0,T),

B[], = BII" W] (1% — %ll) %, €00 x[0,T) % € Qx {0},
B[L* 9], = BIL*[¥]] (1% — %)) %, €00 x[0,T), % €Q°x[0,T),
I[B*[¥]],, = I[B* W] (I%; — %ill) %; € Qx {0} , %, €00 x[0,T),
I, = 1[I (1% — %ll) xj,%i € Q2 x {0},

I[Lr )], = T[L W] (%5 — %ll) %, € Qx {0}, % €Q°x[0,T),
LB, = L[B*WI(I% — %), % €Q°x[0,T) ,% €92 x[0,7),
L[], = LI (1% = %al) %; € Q° < [0,T), % € Q x {0},
L[L*[¥]],, = LIL*[]] (1% — %ll) %j, % € Q° < [0,7).
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1 Introduction

We consider the following multiobjective mathematical programming with vanishing constraints
(MMPVC in brief):
MMPVC : Hlelgrll F(z):= (fi(x),..., fp(x)),

Q:={zeR" | Hi(z) >0, Gi(x)H;(x) <0,i € I}, (1)

where, the considered functions f; (for j € J:={1,...,p}), H; (for i € I := {1,...,m}), and
G; (for i € I) are convex, not necessarily differentiable, and defined from R™ to R.

If p =1, then MMPVC reduces to “mathematical programming with vanishing constraints”
(MPVC) which were introduced by Kanzow and his coauthors in 2007 [1, 9]. After defining
the MPVC, finding the optimality conditions, named stationary conditions, for it become an
interesting subject for some researchers; see [7, 8, 9, 13] in smooth case and [10, 11] in nonsmooth
case).

If Gi(z) = 0 for i € I, the MMPVC coincides to classical multiobjective programming
problem which is an important field in optimization theory. Also, the MMPVC is a direct
generalization for the following “mathematical problem with equilibrium constraints” (MPEC),

considered in a lot of papers (see [14, 16] and their references):

min  F(z)
s.t. H;(z) >0, Gi(x) >0, iel,

To the best of our knowledge, there is no work available dealing with MMPVC with nondif-
ferentiable data, and the present paper is the first to consider it. So far under differentiablity
assumption, there is only one conference paper that considered MMPVC [12].

As well as classic multiobjective optimization, we can consider different kinds of optimality
(efficiency) for MMPVC, including weakly efficient, efficient, strictly efficient, isolated efficient,
and properly efficient solutions. Some characterizing of weakly efficient solutions for MMPVCs
with smooth data are presented in [12]. In order to obtain optimality in which, given any
objective, the trade-off between that objective and some other objective is bounded, Geoffrion
[3] suggested restricting attention to efficient solutions that are proper. After Geoffrion, proper
efficiency became a very important notion in studying multiobjective optimization, and many
definitions for proper efficiency were introduced in literature, such as those introduced by Ben-
son, Borwein, Henig, Kuhn-Tucker; see [2] for a comparison among the main definitions of this
notion. Here, we will consider the newest definition of proper efficiency that is introduced in
[4], and will characterize it for nonsmooth convex MMPVC. This characterization is made for
the first time, even for MMPVCs with smooth data.

Since the product function of two convex functions is not necessarily convex, the feasible set
Q) is not necessarily convex. Consequently, to set optimality conditions for properly efficient so-
lutions of MMPVC, we can select different normal cones for S. Here we focus on Mordukhovich
normal cone of . This kind of optimality condition has been studied in [7, 8, 9, 14, 16] for
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MPVCs and MPECs. We would mention that all mentioned references to MPVC have con-
sidered the problems with continuously differentiable functions, and the present paper extends
their results to MMPVC with nondifferentiable functions.

The structure of this paper is as follows: Section 2 contains some definitions and theorems
from convex analysis and non-smooth analysis. In section 3, we will introduce a new constraint
qualification for MMPVC, and will present a necessary condition for properly efficient solutions
of MMPVC. Then, we will show our necessary condition is also sufficient under some weak

assumptions.

2 Preliminaries

In this section we present some preliminary results on convex analysis and nonsmooth analysis
from [6, 15]. Suppose that g : R® — R is a convex function, and zg € R™. The subdifferential

of g at x¢ is defined as

9g(wo) == {C € R" | g(2) — g(x0) = ((,x — wo), V& cR"}.

Notice that if g1 and go are two convex functions from R"™ to R, and « is a non-negative real

number, then ag; + g2 is convex and

d(ag1 + g2)(z0) = adgi(zo) + dga(wo).

Let ¢ : R” — R be a locally Lipschitz function. The Mordukhovich subdifferential of ¢ at zq
is defined as

Ovp(xo) := lim sup {E € R" | lim inf #ly) — ele) - <§,y — x> > 0}.

T—x0 y—z ly — |

We observe that if ¢ is a convex function, then darg(zo) = dg(xo) and O (—g)(xo) = —0g(xo).
Also, for two locally Lipschitz functions ¢; and @9 from RP to R, and for an arbitrary real

number «, we have
Om (ochl + <p2)(x0) C adnp1 (o) + Oprpa(xo).

Notice that if x¢ is a minimizer of ¢ on RP, then 0, € dar¢(xo), where 0, denotes the zero
vector of RP.
The Mordukhovich normal cone of a closed subset A C RP at x¢ € A is defined by N (A, ) :=

OnmZa(xo), where
0 r €A
Ia(z) = ’
r(2) { +00 z ¢ A
It is not difficult to show that for given A; C RP* and 2 € A;, i =1,...,s, we have

Nag (A1 A (20,2 ) ) = Nag (Mg, 2) - x Nag (A, 2). 2)

If h(y) = (h1(y), ..., hs(y)), where h;s are locally Lipschitz from R™ to R, and z* = (7, ..., z%),
then the Mordukhovich coderivative of h is defined as
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D*h(y)(x*) = On <Z xzhk(y)> (¥)-
k=1

Let II : R” = R*® be a set-valued function, and Z € II(g). We say that II is calm at (7, T) if
there exist some L > 0 and neighborhoods U and V around T and ¥, respectively, such that
drg)(r) < Llly —7ll,for all y € V and 2 € U N1I(y), where dpyy) () denotes the distance
between x to II(7).

Theorem 1. [5, Theorem 4.1] Suppose that the set-valued mapping f : Rl = R¥ is defined as
F(y):={xeC|g(x)+yecE},

where the function g : R¥ — R is locally Lipschitz and (C, E) C R¥ x R! is closed. If [ is calm
at (0,%) € GphF , then

N (F(0),7) € U D@+ Nu(C o).
v N (B.9(®)

Theorem 2. [5, Corollary 3.4] Consider the set-valued function f : RP = R¥,
F(y) = {z € R | g(z,y) € B},

where g : R¥ x RP — RY is locally Lipschitz and £ C R? is closed. Let (,%) € GphF . Further,

assume the following qualification condition holds,

U [Ou (2", 9)(@,9)], = 0,

z*€Nm (E,9(7,5))\{0}

where [ ], denotes projection onto the x-component. Then, F is calm at (7, ).

For two vectors z,y € RP, the inequality < y stands for x; < y; for all i € {1,2,...,p}.
The inequality z < y means z < y and x # y. Furthermore, x < y stands for x; < y; for all

ief{1,2,...,p}.

3 Main Results

At the start of this section, we recall that the feasible solution set of MMPVC which is defined
in (1) is denoted by Q. Also, we recall the following definition from [4, pp. 110].

Definition 1. A feasible point zy € € is called a properly efficient solution to MMPVC when

there exists a vector A > 0, such that
(N, F(x0)) < (\, F(x)), Y € .
Throughout this paper, we fix a feasible point z € €2, and divide the index set I as

I :={ieI|Hy#) >0}, and Iy:={iel|H;&)=0}.
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Also, we divide these two index sets as
10 :={i e I | Gi(2) = 0}, I = {i eIy | Gi(z) <0},
IS_ = {Z el | Gt(.f?) > 0}, Ig = {’L el | Gl(f) = O},
107 = {’L el | Gl(i‘) < 0}

Now, we introduce a new constraint qualification for MMPVC that plays a key rule in this

section.

Definition 2. The MMPVC is said to be satisfy to (€9) at & if there are not, non-zero together,
scalars o; and B; for i € I, satisfying a; > 0 for ¢ € Ig U 13, Bi > 0forie Iy, a8 = 0 for
1€ I87 and

ieIQuIf i€l

We should mention that (€Q) is a generalization of a constraint qualification that is de-
fined by Ye [16] for mathematical programming with equilibrium constraints (MPEC), named
“No Nonzero Abnormal Multiplier Constraint Qualification”. This constraint qualification was
extended to nonsmooth MPECs by Movahedian and Nobakhtian [14], and is considered for
MMPVC, for the first time, in the present paper.

Example 1. Let
Q={rcR? |2y > —x9, x2(x;+23) <0},

and & = 0y € Q. This set can be considered as feasible set of a MMPVC with following data:
Hy(x1,x2) = x1 + 22, and  Gi(x1,z2) = zo.
Obviously, Inp = {1}, 0H1(2) = {(1,1)} and 0G1(&) = {(0,1)}. A short calculation shows that
02 € 10G1(2) — f10H1(£), a1 >0, 1 >0 = a3 =p1 =0,
and so, the €9 holds at .
The following theorem presents the first main result of this section.

Theorem 3. Let & be a properly efficient solution to MMPVC. If (¢) holds at &, then there
exist scalars ﬂf, pl and pé, for j € J and i € I, such that:

p m
On €Y nf0fi(&) + Y [uf0Gi(2) — pffoH,(2)] , (3)
j=1 i=1
p$ >0, ieIyuIl; pd =0,ielfuly UIL, 4
ui® free, i € IJ U I, p >0, iely; pl =0, iely,

pitug =0, i€l
(11 - pmh) > 0,
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Proof. Since & is a properly efficient solution to MMPVC, Definition 1 concludes that there
exist some positive scalars uf > 0, for j € J, such that 2 is a minimizer to the following

weighted problem:
P
minZMJFfj (x)  subject to € Q.
j=1

Therefore, J 1 Hj fj + Zg attains its global minimum at Z. Hence,

p p
On € Ou | D ulfi+Za|( Z Ponf;(@) + 0mZTa(t)
j=1 =1
p
§j 15 0F;(&) + Nar(Q, 7). (8)

For estimating of Nj(Q,2), for all i € I take ©;(z) := (Gi(z), H;(z)), and let O(z) :=
(©1(z),...,0m(x)). Also, set

X, = {(v",v*) € R? | v? > 0 and v'v? <0},

and X = {(v1,...,0m) € (R?)™ | v; := (v},v?) € X\, Vi€ I}. Since X =[]", X, then

Ny (X, 6(2) HW&ﬂW, (9)

i=1

by (2). On the other hand, the following equality has been proved in [7, Lemma 3.2]:

X, for i€l
{0} x R for iel
Ny (X, 0:(%)) = {0} x R_ for i€l (10)
Ry x {0} for iell
{0} x {0} for iel.

Owing to (9)-(10), the (€Q) at & implies that for each p = (p¢, pi7, ..., pS, pH) € Nas (X,0(2))
we have
On € Y [pF0Gi(2) + pf 0Hi(2)] = p = Oom.
iel
Thus,
On ¢ U [0 ((p,©(x) +y)) (&, 0m)], -

O2m#pENM (X,0(T))

From this and Theorem 2 we conclude that the set-valued function Q(.) is calm at (&,0,,),
where Q(y) := {z € R | ©(z) +y € X} for each y € R2™. Since Q(0,,) = €, Theorem 1
deduces that
Nu(@i)c | DO@O) + NuR™ ). (11)
AEN M (X,0(2))

On the other hand, by(2), for each X := (M, XY, ..., AH AC) € R*™ we have

m?'m
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D*O(&)(\) = dur (N, 0(.))(2) lz (! HﬁA?Gi)] (2)

= [\oH; (&) + AF0G;(2)] .
=1

According to above equality,(11) and the fact that Ny (R™, 2) = {0,}, we get tho following
estimate for N (Q, £):

Ny (€, ) C U lzm: (AOH;(2) + A\{0G;(2))

AENN (X,0(&))

i=1

Hence, the last inclusion and (8) imply that

0, € ZuFaf] (%) U [Z (ATOH,(2) + AT 0Gi(#)) | -
,\eNM(X o(#)) Li=1
Therefore, there exists some A := (A X\G, ... AL AC) € Ny (X,0(2)) such that
p m
0> ufofi(@)+ MNoH(2) + AF0G:(2)] - (12)
j=1 i=1

From (10) and A € Np(X, (%)), we can conclude that A& > 0 for i € IJU I, A{ = 0 for
i€ If ULy UIY, M s free for i € INU IS, A < 0forie Iy, \f =0foriellul,

and AIAY = 0 for i € IJ. Taking u$ := N for i € I, == —2H for i € I, plf := \F for
i € I'\ I3, and considering (12), the result is justified. O

It is worth mentioning that when p = 1, the relations (3)-(7), named M-stationary condition,
are proved in [7, 8] for the problems with smooth data, and in [14] for nonsmooth MPECs. The
present paper is the first that studies this kind of stationary condition for MMPVCs.

We know from classic nonlinear optimization that necessary optimality conditions are also
to be sufficient under convexity assumption. These results cannot be applied for MMPVC since
the product function H;G; does not convex. The following theorem, which is our second main
result in this section, shows the sufficient condition holds for MMPVCs, under some additional

weak assumptions.
Theorem 4. Let & € €2 be a feasible solution that satisfies in (3)-(7) for some scalars uf, ph,
and uf, (i,5) € I x J.

(a): If
A= (e Id |l <0yutie )| ull =0, u >0} =0,

then Z is a local properly efficient to MMPVC.

(b): If
B=Au{iclf |pf <0}u{iell |uf =0, uf >0}=0,

then Z is a global properly efficient to MMPVC.
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Proof. (a): Suppose that Z is not locally properly efficient to MMPVC. Then, for each neigh-
borhood U C R™ to &, and for each vector A = (A1,...,A,) > 0,, we can find a point
7§ € QN U such that

p p
SONE@E) > N ).
j=1 j=1

F

Notice that (7) leads us take A = p* := (uf’,...,pt) in above inequality. So, the
convexity of Z§:1 uf f; implies that

p p p
(ol =) < 3 filay)) = D wf f3(@) <0, veed | D uith | (@)
j=1 j=1

j=1

The last inequality and the fact that 9 (Z§:1 uffj) (#) = >20_, uj 0f;(2) conclude that
P
Z (g2 —2) <0, Tl eUNQ, Vg € 9f; (). (13)

On the other hand, (3) implies that

>ouliel + Z —pffel =0, (14)
j=1 i=1

for some &I € df;(2), & € 9H,(&) and ¢9 € 0G(2), for (i,5) € I x J.

Let i € If. The continuity of G; concludes that there exists a neighborhood U; for &
such that G;(x) > 0 for all © € U;. Thus, G;(z) > 0, H;(z) > 0 and G;(z)H;(z) < 0,
for all z € U; N Q, which imply H;(z) = 0. Similarly, for each i € I there exists
a neighborhood U; for & such that H;(z) > 0 and G;(z) < 0. Summarizing, for all
x € QNV in which V := ﬂiel&r Uun ﬂiel&r U;, we have Gy(z) < 0 = G4(2), for i € 19,
and H;(z) = 0 < H;(#), for i € I;". Hence

(€f,x—3)<0, Viel?, and (¢,o—-3)<0, Vielf.

So, owing to (4)-(6), we get

(> (ufef —ullely o —2) <0, vzeQnV.

i€IQuIy

By the above inequality, convexity of functions, assumption that A = 0, (4)-(6), and a
short calculation, we deduce that

O (el —pllel),x—3) <0, VzeQnV. (15)
=1

Now, inner-producing two sides of (14) to  — & and regarding (15), we conclude that
P
S Ul (e e —3) 20, VeeQnV,
i=1

which contradicts (13). Thus, the proof is complete.
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(b): Emptiness assumption of B leads us to repeat the proof of (a) without considering any
neighborhood for Z.
O

Example 2. Consider the MMPVC with following data:

fi(z1,22) = aF + |22, fa(w1,x2) = 221 + 3|aa|,
Hi(z1,22) = —x2, Hy(xq,x2) = |21] + 22,
Gi(z1,22) = —1, Ga(z1,22) = —21.

Taking & = 0z, we conclude that I, = {1} and IJ = {2}. Since the conditions (3)-(7) hold for
pt =l =1, pll = pll = % and uf = pu§ = 0, and also B = (), Theorem 4 implies that & is
properly sufficient for the problem.

4 Conclusion

In this paper, we considered a new class of nonsmooth multiobjective optimization problems,
denoted by MMPVC, as an extension of the mathematical programs with vanishing constraints
from the scalar case and the multiobjective mathematical programming with equilibrium con-
straints. We introduced a suitable modification of the “No Nonzero Abnormal Multiplier Con-
straint Qualification”. We gave Karush-Kahn-Tucker type necessary optimality condition for
proper efficient solutions, and derived that this necessary condition is also sufficient for proper

efficiency under some additional assumptions in emptiness kind.
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1 Introduction

Conjugate gradient (CG) and quasi-Newton (QN) methods contain a class of unconstrained
optimization algorithms, with some great properties such as low memory requirements and
strong global convergence [34], which make them famous for engineers and mathematicians

engaged in solving large-scale problems, as follows:

min f(x)
x € R" (1)

where f : R® — R is a smooth nonlinear function, and its gradient is available. The iterative
formula of a CG method leads to a sequence of the approximate solutions, as {x,} with the

following recursive formula:
The1 = Tk + Sk, Sk =opdr, k=0,1,2,... (2)
where g € R™ is an initial solution and dj, is the search direction with following formula:
do = —go0, dg+1=—gk+1 + Bedr, k=0,1,2,... (3)

where g = Vf(xr) and Bi is a scalar called the CG (update) parameter. In Eqn (2) the
«a parameter is the step length at current iteration along di. Inexact line searches satisfy
some certain line search conditions [22]. Among them, the so-called Wolfe conditions [22]
have attracted particular attention in the convergence analyses and the implementation of CG

methods, requiring that:

flan + ondi) — f(ay) < daug) di, (4)
g(xp + apdy)dy, > ogi dy, (5)

where 0 < § < ¢ < 1. These conditions guarantee that s{yk > 0, where yx = gx+1 — gk, and si
is defined in (2).

Different choices for the CG parameters lead to different CG methods. In early CG meth-
ods, the conjugate condition is based on the quadratic objective function and the exact line
search, which is d;‘ggk“ = 0. These methods lead to the classical linear CG methods such
as Fletcher-Reeves (FR) [23], Hestenes-Stiefel (HS) [21], Polak-Ribie ‘re-Polyak (PRP)[9, 13]
and Dai-Yuan (DY)[36]. Classic methods have same performance for linear CG methods, al-
though they have different global convergence properties and numerical performance for general
nonlinear objective functions or inexact line search (see [32]).

New nonlinear CG methods are presented with different approaches such as constructing
descent or sufficient descent directions, new extended conjugacy conditions or a hybrid with
QN methods. For example, Zhang et al. [18], construct some descent classic CG directions as
three- terms CG, TTCG, methods. For instance in a special case, they proposed a three-term
HS, TTHS, with the following search direction [18]:

diTi = g1 + B dk — Opsr i, (6)
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where
HS _ iy 1Yk Oy — k10 o
¥ ALk’ ALy

It is also clear that if the exact line search is used, then 17 = 0, and the TTHS method
is converted to the classic HS method. By replacing the HS method with other linear CG
methods, some new descent methods, such as TTPR and TTFR can be achieved (see [18]).
An attractive feature of these methods is that the direction has sufficient descent conditions,
ie. dFgr = —|lgrl® (||.]] is the Euclidean norm), which is independent of line search [18]. In
addition, Babaie-Kafaki and Ghanbari [28] apply the idea of TTHS method, Equns (6)-(7), using
a modified BFGS, proposed by Li and Fukushima [6], and introduce a modified TTCG, named
MTTHS, as follows:

AT = gy + BT dy, — 0 2, (8)
where
MITS _ Gea®k vt _ G 9)
dlz k dlz
and
2k = g1 — gk + cllgr sk = yr + cllgll" sk, (10)

where > 0 and ¢ > 0 are some constants, in Eqn (10), z; plays a vital role in the global
convergence of the MBFGS method for nonconvex function [17]. Similarly, Sugiki et al. [15]
proposed another modified TTCG method, using a TTCG method, proposed by Narushima et
al. [37] and a general form of the modified secant conditions, which generate a search direction
with sufficient descent conditions.

At first time, Perry [3] to find more efficient CG methods, incorporated the standard secant
equation to conjugacy condition and proposed his method to approximate the directions of CG

to QN direction, as in the following:

dkPH = —0gk+1+ B;fdk = _Qkp+1gk+1a (11)

where Qkp 1 1s the direction matrix, as a nonsymmetric matrix which approximates the inverse
Hessian of the objective function at current iteration, and 8} is the Perry CG parameter, which
are defined as follows:

_ g}{+1yk B gg+15k

6P - 9 QP =1I-

T T
SkYr SkSk
Yi sk i sk

(12)

As mentioned, from Wolfe conditions in means (4)-(5), we have s}y, > 0, so the matrix in (12)
is well-defined. In Perry approach, the direction matrix, Qf 41, 1s not symmetric and also does
not satisfy the secant equations [5]. To overcome these defects, Shanno [5] combined the Perry
method and memoryless BFGS method to introduce a new CG direction as follows:

Arsky%‘+>yks£‘%f(1g% yfyk)sks{)

Jk+1 (13)
stk sFy,” sEys,

df+1 = *Qf+19k+1 =—(I
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In 2001, Dai, and Liao [35] extended the Perry conjugate condition and introduced the new

nonlinear CG method as follows:

dety = —ges1 + BP dr = —QP gk 41, (14)
where
DL _ ng+13/!< - 9/§+15k QPL — S%yk B tsZSk (15)
¥ ALy dfyr kL Sfyk Styr’

where t is a nonnegative DL parameter. Note that if t =0, then ﬁ,? reduces f;, 1S Eqn(7), if
t =1, then BPF reduces to Bf, Eqn(12).
For extending the global convergence properties of general objective functions, Dai, and

Liao [35] considered a truncated form of the DL method, with an extended DL parameter,

namely BD L+ and the following direction:
Ghs 1k 9 415k
dffl = —gri1 + BEETdy = —gryr + | max{ k+1 ,0} — k;l dy, (16)
k yk dk Sk

As a famous descent CG method, independent from a type of line search, Hager and Zhang
(HZ) [31] introduced the following CG parameter:

HZ _ ngHyk e || ngﬂdk
. =g — —2 (17)
dk Yk dk Yk dk Yk

HZ method is an adaptive version of the DL parameter corresponding to ¢t = 2% in Eqn
(15). Another adaptive DL parameter is based on scaled memoryless BFGS, suggested by Dai
and Kou (DK) [33], as follows:

I?

T
DK (1) = Tk 1Yk —(r Iyl skyw )9k+15k

3 18
dlTyx sty lIsell?” dEye (18)

In which 7 is a parameter corresponding to the scaling factor in the scaled memoryless BFGS
method.

Although the setting of the DL parameter is an open problem in CG methods [2], many
efforts have been made by researchers to adjust it. As instance, in descent approach based on
an eigenvalue study, the authors in [25] proposed a descent class of DL method, namely, DDL.
An exciting feature of the proposed class is that the HZ and DK methods are individual cases
of it, as efficient nonlinear CG methods. The DDL search direction is as follows [25]:

df yi _tpqdksk

APl = —ge1 + BPd = —(1 + ATy, % dTyx )Gk+1, (19)
k
where ¢'? is DL parameter as follows:
2 T
tpaq — ||yk|| Sk Yk (20)

—q
siye llskll®

where p and q are nonnegative constants, which p < i and q > i. For more information about
setting the DL parameter, see [16, 24, 27, 29, 38].
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Another conjugacy approach in CG methods is based on the different types of modified
secant equations instead of standard secant equation in DL method. To review the different
types of modified secant equations see the Introduction section of [25].

Here, motivated by DL+ approach, similar to [17, 13, 10, 11], we apply the modified secant
equation proposed by Li et al. [10], named MSL, for a new extended conjugacy condition
and then using two approaches, similar to DL+, we adjust its parameter. Therefore, the
advantages of the new proposed nonlinear CG method are using the second-order information
of the objective function, by a modified secant equation, and setting the DL+ parameter to
improve in the search directions, simultaneously.

The remainder of this paper is organized as follows. In Section 2, we introduce a new
extended conjugacy condition based on MSL [10]. Then we discuss two approaches to setting
the parameter. In the first approach, we use the MTTHS descent method (8)-(9). In second
approach, we try to match the direction matrix of the CG method to the Shanno quasi-Newton
direction matrix, Qf +1, Eqn (13). Then, we discuss their global convergence. In Section 3, we
numerically compare our methods with the DL, HZ, and DK methods and report comparative

testing results. Finally, we make conclusions in Section 4.

2 New Nonlinear Conjugate Gradient Methods

In this section, based on MSL [10], we first introduce a new extended, modified conjugate

condition for CG methods, and then we describe two methods for calculating the parameter.

2.1 Conjugacy condition based on MSL

Using modifies secant equations are common in CG and QN methods for solving unconstrained
optimization problems. For example Zhang et al. [13] and Zhang and Xu [14] proposed new
QN methods based on a modified secant equation. Moreover, Yube, and Takano [11] applied
this equation for a nonlinear CG with global convergence properties. New versions of this
modified secant equation can be seen in [26, 20, 12]. Zhang and Zhou [17] applied a modified
BFGS method for a nonlinear CG method, which is proposed by Li and Fukushima [6]. Li
et al. [10] used with the modified secant equation in [39, 40]. Suugiki et al. [15], unify the
above-modified secant equations as a general form and proposed a TTCG method with sufficient
descent property.

As special case, here, we apply the conjugacy condition proposed by Li et al. [10], which
further studied by [39, 40]. This condition is based on the modified secant equation, MSL, as
follows [10]:

Bii1sk =Yy, Y = Yk + Apug, (21)

where Bj1 is an approximation of the Hessian matrix of the objective function, uy € R™ is a

vector that satisfies sfuk #%0and A, = Sf’;k where 0, = max{0;,0} and 0y is as follows:
k
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Ok =2(fx — frt1) + (g + gr+1)" sk (22)

The modified secant equation in Eqn (21), is based on a revised form of the modified secant
equation proposed in [39, 40]. According to (3), similar to DL conjugate condition [35], the new

extended conjugacy condition based on (21) is presented as follows:
d£+1?k = *tDLJrngHSk» (23)

which is named DL+ conjugate condition. Using CG direction in (3) and (23), we have the
following CG parameter:

DIt 9hr1Uk LT he15k

K = T e — (24)
A Y e Uy
For tPE+ = 0, the DL+ method is converted to the MHS method in Eqn (9). By replacing the

(24) in (3) and rearranging the vectors, we have the following new search direction:

DLT DLT SkUk _ DL 5k 5k
diyy = =Qpiy g1 =—(I + o ! =) Gk+1 (25)
k Yk Sk Yk
Then the associate CG method is called DL+ and its parameter, X+ is called DL+ (update)
parameter.
Now similar to DL+ parameter, the setting of the DL+ parameter is an vital issue. In following,

we use two approaches to set it.

2.2 Setting DL+ parameter

To set the DL+ parameter, we apply two approaches. The first is based on the descent direction,
and the second is based on the QN approach.

2.2.1 Descent approach

In linear search methods, the descent direction is vital to convergence analysis. Since the DL+
direction may not satisfy the descent condition, similar to [25] for DL method, here we try to
satisfy the descent condition of DL+ method using the MTTHS direction in (8)-(9), [28]. For
this purpose, consider the following subproblem:

min [[dg5" = dii i (26)

Using simple algebraic calculations, we get the DL+ parameter as following;:
DLF* _ i(al —as +
kl a2 3 |

(7
Wdfzk), (27)

where
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T = T
a = Ji+1Yk 0 — e+15k
1 — T— ’ 2 — T—
Ay Y, di, Yy,
T T
a5 = k417K ay = it 19k
d{zk ’ d;{zk ’

where zj, and 7, are defined in Eqns (10) and (21), respectively. After some simplification, the

Eqn(27) can be written as follows:

=T
DL Yi 9k+1
tkl = T (28)
Sk 9k+1
However, the parameter tle L+ should be nonnegative. So, we use the following modified form
of this parameter given:
tl?lL** = max{t,?lLJr*, 0} (29)

So, by replacing (29) in (14), we get a new nonlinear DL direction as following:

T T
k4196 DLy« Ik+15k

gNDL-1 _
ALy m Al ye

k1 —gk+1 + (

)l (30)

where t,gLH is defined in Eqn (29). The CG method based on the search direction d]kVJﬁL—l,
called "NDL-1" method.

2.2.2 QN approach

Since QN methods apply the second derivative information in search directions, so they are
useful in solving large scale unconstrained optimization problems. Therefore, to access the CG
direction matrices to approximate the inverse Hessian matrix, similar to [3] in the QN method,
we enhance the efficiency of CG method. For this reason, we approach the matrix direction
of the DL+ method, QkDJrTf', to the Shanno quasi-Newton direction matrix, Qfﬂ, Eqn (13).
Therefore, Consider the following subproblem:

tey = argmin| Q5" — Qe (31)

where ||.||r is Frobenius norm. Using the property tr(AAT) = ||A||% and after some algebraic
g F g

calculations, we have

Ui Uk _ S1 Uk

oLt = 4 Zk2 (32)
b2 stk llskll?
Now, similar to (29), we propose the following DL parameter:
okt = {05 0} (33)
So, by replacing (33) in (14), we get another new DL+ direction as following:
NDL—2 Jis1Uk DT Jir15k
dk+1 o= —gk+1 +( ; T Uy + )dka (34)

diy,, diyy,
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where thTJr* is defined in Eqn (33). The CG method based on dﬁﬂLiQ, called "NDL-2” method.
Now, we discuss the global convergence of the "NDL-1” and "NDL-2” methods. So, we need
to make the following underlying assumptions on the objective function, commonly used in the
convergence analysis of the CG methods [34].

Assumption (A):

Let the objective function f is strongly convex and V f is Lipschitz continuous on the level set
S={zeR": f(z) < f(zo)} (35)

That is there exists constants p > 0 and L such that
(Vf(@) = V) (@ —y) = plle—yl?, Ve,yes (36)
and
V(@) = Vi)l < Lllz—yll, Vryes (37)
From Eqns (36)-(37), there exists a positive constant I' such that for all z € S ; |V f(z)|| < T.

Lemma 1. [30] Let the Assumption (A) holds. Consider any CG method in the form of (2)-(3)
in which for all k£ > 0, the search direction dy is a descent direction, and the step length ay, is
determined to satisfy the Wolfe conditions, (4)-(5). If

1
ZW:OO (38)

then the method converges in the sense that
liminf [|gx|| =0 (39)
k—o0

Theorem 1. Let the Assumption (A) holds for the objective function f in (1). Consider a
CG method in the form of (2)-(3) with the CG direction defined by (30), "NDL-1” method, in
which the step length ay is computed such that the Wolfe conditions (4)-(5) are satisfied. If
the objective function f is uniformly convex on S, then the method converges in the sense that
(39) holds.

Proof. For any uniform convex differentiable function f, there exists a positive constant p such
that (see Theorem 1.3.16 of [30])

Yi sk 2 pollsell? (40)

Also similar inequality can be proved by replacing y, with ¥,. For this purpose we have

;
)" s = s{ye + maa {0, 0} 2 sty > pl|si? (41)
k Uk

Ui sk = (yk +
Note that, from the second equation of the Wolf conditions, Eqn (4), we have:

Giprdi > ogildy, (42)
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On the other hand, from (21) we have:

ykxll < Nyl + | Arurl = lyell + llwll (43)

where wy, = Aguy and Ay is defined in (21). Now we show that ||g,|| < Lil|/sx||. For this

purpose, first of all, using Taylor expansion of 6y in Eqn (22), we have:

10| < M| sk (44)

Then, considering the Eqn(21), we have two cases for wy, [10]: wy = ‘ﬁjﬁ or wy, = Z%Z’Z , which
k
0y is defined in (21). In the first case, from Equs (37), (43) and (44),we get:

_ |0 1|5
1!l < llyell + Tkl (L + M)[sgll = Mu||sl], (45)

where M; = L+ M. In the second case, from (37), (40) and (44) we have:

ML||s|®

1Zell < llyell +
: pllsell®

M
<L(1+;)H5k” = Ma|[skl], (46)
where My = L(1 + %) Now, let Ly = max {My, M2}, then we have:

[Frll < Lallskll (47)

Next we can show that ||zx| < Lal|sg|, where zj is defined in (10). From the eqns (10) and
(37), we have:

lzkll = llyx + cllgell"sell < llyxll + cllgell" skl < Lilskll + cllgrll"[Isk |l
< (L +cI)ISkll = La|[skll, (48)
where Ly = L + ¢I'". Moreover, from (40) and (10) we have:
sk 2k = st (y + cllgrll"sk) = sgyr + cllgrll” skl

> (u+ cllgel ) Iskll? > pllskll?, (49)

which implies that s}z, > /s ?>. Hence from this inequality and Eqns (41), (47), (48), (49),
(5) and Cauchy-Shwartz inequality we have:

|tﬁ*\ Ay 9hi1Tk | Gha#k | Ghpad
k - —
' glise \ diyy, St 2k | d [|?
[EANEA (||9k+1||yk| N gt 1]l 2] N ||9k+1||$k||)
~ ollgrrallliskll \ Ellskll? skl [|sk2
L L L
§1(1+2+1) (50)
o\ p

That is tle L+* i3 bounded for uniformly convex objective function. So, if we use the Wolfe
conditions, (4)-(5), similar to Theorem (2.1) in [25], the search directions are bounded away,

which with Lemma 1 complete the proof. O
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Theorem 2. Let Assumption (A) holds for the objective function f in (1). Consider a CG
method in the form of (2)-(3) with the CG direction defined by (34), "NDL-2” method, in
which the step length «y, is computed such that the Wolfe conditions (4) and (5) are satisfied.
If the objective function f is uniformly convex on S, then the method converges in the sense
that (39) holds.

Proof. Counsidering the Assumption (A) and the assumptions of Theorem 1, from eqns (36),
(41), (45), (47) and definition of tkDQL+*, Eqn (33), we have:

(DT p 4 DT S0 Il 15k
k2 - —

sty lskll? st llskll®
Llsell> | lsellllgell L3
<1+ 32 =1+L+2L (51)
(EA sk J

So, similar to Theorem 1, the search directions are bounded away, and the proof is complete. [J

In order to ensure the global convergence of the proposed CG methods, "NDL-1” and "NDL-
2” methods, for general functions, we modify the CG parameter in Eqn (24), similar to [35, ?],

as follows:
BE 91T BT It 15k
Brltt = man (L o) — PR =109 (52)
dk Y ¢ dk Yk

where tkDiL+*, i = 1,2 is defined in (29) and (33), respectively. Theorem 3.6 of [35] ensures the

global convergence of the methods, which are named DL+, for general functions, if the search

directions satisfy the sufficient descent condition.

3 Numerical Experiments

In this section, we present some numerical experiments, obtained by applying a MATLAB
8.8.0.1 (R2013a) implementation of the proposed nonlinear CG methods, "NDL-1” and "NDL-
27. The numerical results are compared with the DL+ [35] with parameter ¢ = 0.1 and DK [33]
with parameter 7, = % We perform the implementations on a computer, Intel(R) Core
(TM) A10-8700P CPU 3.20 Gigahertz 64-bit desktop with 8 Gigabyte RAM. Our experiments
have been done on a set of test problems of unconstrained optimization problems of CUTEr
collection [1]. Although the descent property may not always hold for the proposed method, the
upward search direction seldom occurred in our experiments; when encountering, we restarted
the algorithm with Powell Restart [30], which is |g{ gkt1] < 0.2 gk+1]]-

Moreover, we used the active approximate Wolfe conditions described in (4)-(5) with pa-
rameters o = 0.9 and p = 10~%. The same stop condition is considered for all methods, which
are ||gx|loo < 107 and the maximum number of iterations is limited to 1000. Table 1, shows
our comparing data contains the test problems, dimensions (n), the total number of function
evaluations (f,) and the total number of gradient evaluations (g, ), respectively.
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performance

Figure 1: Performance profiles based on the number of iterations for "NDL-1", "NDL-2”, DL+ and
DK methods.

performance

pw)

w

Figure 2: Performance profiles based on CPU time for "NDL-1”, "NDL-2”, DL+ and DK methods.
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p(w)

performance

Figure 3: Performance profiles based on ny + 3ng for "NDL-1", "NDL-2”, DL+ and DK methods.

For more comparison on our numerical results, we apply the performance profile introduced

by Dolan and More” [8].

Table 1: Experiments results of the proposed methods about the total function evaluations (f,) and

gradient evaluations (g»)

DL+ DK NDL -1 NDL -2
Problem n fa\gn fo\ gn fa\gn fa\gn
AKIV A 2 2\ 2 2\ 2 2\ 2 2\ 2
ALLINITU 4 451\ 313 626 \ 408 622\ 404 421\ 326
ARGLINA 200 17\ 17 18\ 18 T\ 7 11\ 11
ARGLINB 200 45267\ 2003 33853\ 766 33853 \ 766 41262\ 1258
ARGLINC 200 76960 \ 3407 153903 \ 3479 153903 \ 3479 35670\ 1081
ARWHEAD 5000 8136\ 1077 36169 \ 3122 71908\ 6014 668 \ 7225 \ 669
BARD 3 6018 \ 2672 23350\ 8756 22325\ 8326 4163\ 1749
BDQRTIC 5000 19057 \ 1820 142535 \ 10001 143643 \ 10001 22755\ 1717
BEALE 2 3490 \ 1413 2753 \ 949 2719\ 946 990 \ 421
BIGGS6 6 4271\ 3784 1670\ 1319 7928 \ 7719 530\ 429
BOX 10000 11453\ 1123 115065 \ 10001 119587 \ 10001 6361 \ 587
BOX3 3 60\ 59 29\ 28 54\ 53 1016 \ 998
BRKMCC 2 455\ 179 3087\ 965 3103\ 970 1496 \ 599
BROWNAL 200 85271\ 10001 122892\ 8870 139672\ 10001 24583 \ 1892
BROWNDEN 4 23116 \ 1816 70244 \ 5015 29466 \ 2129 16501 \ 1286

Continued on next page
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Table 1 — Continued from previous page

DL+ DK NDL -1 NDL -2
Problem n fn\ gn fn\ gn fn\ gn In\ gn
BROYDNTD 5000 34827\ 7796 49687\ 10001 48910\ 10001 26146 \ 6441
BRYBND 5000 4336\ 1063 1845\ 495 1779\ 511 2659 \ 702
CHAINWOO 4000 21411\ 2385 54444\ 6153 91905\ 10001 16734\ 1961
CHNROSNB4 50 13102\ 1757 67274\ 8503 66035\ 8374 10379\ 1464
CHNRSNBM 50 15446 \ 20934 54485\ 7030 47455\ 6218 10953 \ 1571
CLIFF 2 32270\ 10001 10037\ 10001 13987\ 10001 37944\ 10001
CUBE 2 3891\ 739 81088 \ 100014 81353\ 10001 2893\ 575
CURLY10 10000 104174 \ 10001 108942\ 10001 108925\ 10001 100641 \ 10001
CURLY?20 10000 122180\ 10001 127249\ 10001 127199 \ 10001 121138 \ 10001
CURLY 30 10000 132988\ 100014 138686 \ 10001 138608 \ 10001 130225 \ 10001
DECONVU 63 18656 \ 5170 6881\ 1898 8575\ 2421 11110\ 3554
DENSCHNA 2 25\ 25 33\ 33 26\ 26 27\ 27
DENSCHNB 2 16\ 16 17\ 17 10\ 10 12\ 12
DENSCHNC 2 1642\ 651 2146 \ 1417 3643\ 1164 867\ 439
DENSCHND 3 2354\ 283 741\ 96 100410\ 3841 3038\ 288
DENSCHNE 3 21\ 18 21\ 18 12\ 9 16\ 13
DENSCHNF 2 6528 \ 1158 2136\ 375 12319\ 2203 5669 \ 1006
DIXMAANC 3000 20\ 184 19\ 17 14\ 12 15\ 13
DIXMAANA 3000 17\ 16 18\ 17 11\ 10 13\ 12
DIXMAANB 3000 19\18 18\ 17 11\ 10 14\ 13
DIXMAANC 3000 20\18 19\ 17 14\ 12 15\ 13
DIXMAAND 3000 609\ 76 21\ 17 16\ 12 3717\ 289
DIXMAANE 3000 279\ 278 1313\ 1312 1093 \ 1092 143\ 142
DIXMAANF 3000 760\ 759 625\ 624 393\ 392 496 \ 495
DIXMAANG 3000 219\ 217 425\ 423 276\ 274 794\ 792
DIXMAANH 3000 9281\ 863 13364 \ 1332 157256 \ 10001 5123\ 553
DIXMAANI 3000 302\ 287 117\ 116 75\ 74 546 \ 156
DIXMAANJ 3000 1191\ 1188 580\ 579 367\ 366 630\ 629
DIXMAANK 3000 322\ 320 414\ 412 254\ 252 626 \ 624
DIXMAANL 3000 107360\ 10001 6648\ 616 136154 \ 10001 147794 \ 10001
DIXMAANM 15 231\ 231 172\ 172 810\ 810 199\ 199
DIXMAANN 15 207\ 206 1299 \ 1298 754\ 753 174\ 173
DIXMAANO 15 203\ 201 1309\ 1307 74T\ 745 171\ 169
DIXMAANP 15 194\ 191 1309\ 1306 742\ 739 176\ 173
DIXON3D@Q 10000 208\ 208 286\ 281 1218\ 1218 1003\ 1003
DJTL 2 13213\ 606 36052 \ 1461 30600 \ 1246 11650\ 532
DQDRTIC 5000 11776\ 2069 27788\ 4556 27788\ 4556 8663 \ 1591
DQRTIC 5000 13757\ 843 8647 \ 693 5849\ 398 14899 \ 993
EDENSCH 2000 3449\ 797 3215\ 1299 3762\ 1361 3509 \ 1182

Continued on next page
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Table 1 — Continued from previous page

DL+ DK NDL -1 NDL -2
Problem n fn\ gn fn\ gn fn\ gn In\ gn
EG2 1000 1592\ 358 8142 \ 866 6019 \ 799 1891 \ 363
ENGVAL1 5000 2434\ 1092 1308 \ 574 641\ 241 1535\ 677
ENGV AL2 3 9163 \ 1069 104609 \ 10001 104593 \ 10001 6510 \ 807
ERRINROS 50 83940 \ 10001 71123\ 10001 70231\ 10001 74704 \ 10001
ERRINRSM 50 81101 \ 10001 82952\ 10001 77688\ 10001 83878\ 10001
EXPFIT 2 4474\ 1021 10474\ 1730 11086 \ 1838 2818\ 633
EXTROSNB 1000 76398\ 10001 19469\ 2277 49393\ 5073 71250\ 10001
FLETBV3M 5000 1062\ 1062 328\ 328 1149\ 1149 136\ 136
FLETCBV3 5000 10001\ 10001 10041\ 10001 10001\ 10001 10017\ 10001
FLETCHBV 5000 10001\ 10001 10004\ 10001 10001\ 10001 10001 \ 10001
FLETCHCR 1000 74350\ 9375 83444\ 10001 83284\ 10001 75752\ 10001
FMINSRF2 5625 620\ 620 402\ 402 3670\ 3670 399\ 399
FMINSURF 5625 622\ 622 485\ 485 3678 \ 3678 443\ 443
FREUROTH 5000 16915\ 1829 77020\ 9110 97310\ 10001 11725\ 1307
GENHUMPS 5000 70178\ 10001 73098\ 10001 71091\ 10001 67735\ 10001
GENROSE 500 26425\ 3337 84050 \ 10001 83962\ 10001 32775\ 4311
GULF 3 36993\ 10001 57851\ 10001 59339 \ 10001 55008 \ 10001
HAIRY 2 12791\ 1469 8686 \ 971 9463 \ 1074 10611 \ 1287
HATFLDD 3 15526 \ 10001 14806 \ 10001 11764 \ 7673 23089\ 10001
HATFLDE 3 130\ 124 1469 \ 819 1800 \ 1206 33097 \ 10001
HATFLDFL 3 769\ 290 1460 \ 487 1370\ 457 716\ 180
HEARTG6LS 6 133006 \ 9038 113591 \ 10001 118906 \ 10001 114234 \ 7332
HEARTSLS 8 10175\ 1443 84531\ 10001 82921\ 10001 12482\ 1764
HELIX 3 8600 \ 1268 14178\ 2131 11806 \ 1781 7906 \ 1207
HIELOW 3 2\ 2 2\ 2 2\ 2 2\ 2
HILBERTA 2 159\ 159 315\ 315 181\ 181 67\ 67
HILBERTB 10 126 \ 110 291\ 249 291\ 249 289\ 263
HIMMELBB 2 41\ 27 107\ 93 74\ 60 32\ 18
JENSMP 2 70\ 10 117\ 13 13111\ 857 4212\ 497
KOWOSB 4 81\ 81 99\ 80 141\ 141 27\ 25
LIARWHD 5000 4561\ 573 126596 \ 10001 129301 \ 10001 31873 \ 2659
LOGHAIRY 2 331\ 331 1748\ 1748 10001 \ 10001 10001 \ 10001
MANCINO 100 35018\ 1796 196345 \ 10001 196351 \ 10001 35270 \ 1811
MARATOSB 2 4201\ 375 11849\ 579 12329\ 602 9751 \ 807
MEXHAT 2 18659 \ 1080 62163\ 2941 77494\ 3640 12668\ 738
NONCVXU2 5000 18932\ 10001 27496\ 10001 27503\ 10001 15803\ 10001
NONCVXUN 5000 20774\ 10001 32200\ 10001 32296\ 10001 19306 \ 10001
NONDQUAR 5000 1341\ 309 1556 \ 692 2318\ 1049 1556 \ 378
OSBORNEA 5 408\ 45 135339\ 10001 133752\ 10001 24\ 4

Continued on next page




S. Nezhadhosein, S. Mohammadkhan Sartip/ COAM, 3(2), Autumn-Winter 2018

73

Table 1 — Continued from previous page

DL+ DK NDL -1 NDL -2
Problem n fn\ gn fn\ gn fn\ gn In\ gn
PALMFERIC 8 209967 \ 10001 259169 \ 10001 259585 \ 10001 240573 \ 10001
PALMFER2C 8 173444\ 10001 223136 \ 10001 223115\ 10001 202956 \ 10001
PALMFER3C 8 156749 \ 10001 205456 \ 10001 205364 \ 10001 185655 \ 10001
PALMFERAC 8 156752\ 10001 205456 \ 10001 205364 \ 10001 185582 \ 10001
PALMFER5SC 6 2687\ 1250 1079 \ 450 1091 \ 455 1656 \ 859
PALMFERG6C 8 126013 \ 10001 169991 \ 10001 170001 \ 10001 152097 \ 10001
PALMFERSC 8 128521\ 10001 173751 \ 10001 173697 \ 10001 154526 \ 10001
HIMMELBG 2 10\ 10 13\ 7 T\ 7 17\ 12
HIMMELBH 2 16\ 16 16\ 16 11\ 11 23\ 23
POWELLSG 5000 4253\ 1084 39270\ 7596 34586\ 6692 3560 \ 870
POWER 10000 35680 \ 1839 71636 \ 7038 104337\ 10001 30141 \ 1621
QUARTC 5000 13757\ 843 8647 \ 693 5849 \ 398 14899 \ 993
ROSENBR 2 4068 \ 875 83000 \ 10001 83733\ 10001 2244\ 491

Figure 1, to the number of iteration, and Figure 2, to the running time, shows that the
"NDL-2” method slightly outperforms the "NDL-1”, DL+ and the DK methods. In addition,
Figure 3 shows that to the n;+3ng4, the "NDL-2” method is competitive with the DL+ method.

4 Conclusion

Here, using DL approach, we provide a new conjugacy condition by a modified secant equation

proposed in [10]. To set the parameter of the new conjugacy condition, DL+ parameter, two

approaches are used. The convergence analysis is presented for uniformly convex and general

nonlinear functions. The comparison of the new nonlinear CG methods with some well-known
methods, shows that "NDL-2” method is better in the iteration criteria and in CPU time,
although to the ny + 3n, is comparative with DL+ method.
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1 Introduction

Data envelopment analysis (DEA), initially developed by [3], is a non-parametric technique for
evaluating the relative efficiencies of homogeneous decision-making units (DMUSs) in terms of
multiple inputs and multiple outputs. The basic DEA models and their numerous theoretical
and methodological extensions have been reported in [6]. Unlike the black box model, the
Network Data Envelopment Analysis (NDEA) model considers all internal processes in perfor-
mance evaluation. For example, many companies are composed of several sections that have
linked activities such as Figure 1. In this example, the company has 3 sections. Each section
uses its input resources to generate its output. In either case, there are links or intermediate
products that are shown by the link 1 — 2 and 1 — 3, and the link 2 — 3. The link 1 — 2
shows that part of the outputs of section 1 are used as inputs in section 2. In the current
DEA models, each activity must belong to an input or output, and not both, so these models
cannot be formulated with intermediate products. For the first time in the year 2000, Fare and

l
«»

I . l@
Unk 2-3

Figure 1: A company with three linked activities

Grosskopf [7] provided network data envelopment analysis models. Their models were expanded
by several authors. Sexton and Lewis presented a multi-stage network data envelopment anal-
ysis model in 2004 as an extension of the Lewis and Sexton two-step data envelopment analysis
model [9]. This article solves a dea model independently for each NODE. Tone and Tsutsui [16]
presented a network-based data envelopment analysis model in 2009 based on the SBM model.
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The Revenue Efficiency Model (RE) seeks to find a unit that receives the highest revenue from
inputs equal to the inputs of the unit under consideration, from the sales of non-less than the
outputs of the unit under evaluation. Revenue Efficiency is defined as the ratio of observed
revenue to the maximum possible revenue. Given the fact that in the real world we are dealing
with network data envelopment analysis, it is important for managers to evaluate the revenue
efficiency in NDEA. In 2013, Bani Hashemi and Tohidi [2] presented a model for assessing the
revenue efficiency of network data envelopment analysis models.

Classical DEA models assume that all data is crisp. However, crisp data is not always
available because the nature of data can be vague and unclear. In this case, one of the important
methods for dealing with inaccurate data is to consider fuzzy data. Only in [12] and [13] the
fuzzy revenue efficiency (FRE) with input- outputs fuzzy and fuzzy input prices is discussed.
Aghayi [1] is examined revenue efficiency measurement with undesirable data in fuzzy DEA
and also Kordrostami and Jahani Sayyad Noveiri [8] are studied fuzzy revenue efficiency in
sustainable supply chains.

However, in none of these studies, the measurement of fuzzy revenue efficiency has not
been mentioned in Full Fuzzy Network Data Envelopment Analysis (FFNDEA). In this paper,
we examine full-fuzzy models of network data envelopment analysis (fuzzy input-outputs and
fuzzy input prices) to evaluate fuzzy revenue efficiency. Here, the method of ranking functions
is used. Therefore, the ranking functions transform the full fuzzy model of network revenue
efficiency into a crisp linear programming problem for measuring the fuzzy network revenue
efficiency. The rest of the article will be as follows. In section 2, we refer to fuzzy clauses. In
the next section, the problem of fuzzy linear programming and its transformation into a crisp
problem is studied. section 4 addresses the measurement of revenue efficiency in the DEA, and
in Sections 5 and 6 is examined network data envelopment analysis based on SBM model and
revenue efficiency in it. Section 7,the proposed method for measuring fuzzy revenue efficiency
in FFNDEA is presented and, based on the proposed method, a numerical example is solved in
the last section.
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2 Fuzzy Premises

2.1 Basic Definitions of Fuzzy

In this section, the basic definitions and the symbols of the fuzzy sets [17, 18], fuzzy Numbers
[4], Ranking function [10], and the FFLP concept used in this article.

Definition 1. [17] A fuzzy set A is defined in the reference set X with A = {(z,pz(x) 2 € X}
where p 7 : X — [0, 1] is the membership function and p ;(x) is the degree of = in A.

Definition 2. [18] Regarding X as the reference set, then fuzzy set A will be convex if and

only if for every z1,29 € X:
pi(Azy + (1= Naz) > min (pg(21), pg(22)) YA € 0,1]

Definition 3. [18] Assuming that X is the reference set, then the fuzzy set A is called normal
provided that there exist x € X so that p;(z) = 1.

Definition 4. [18] A fuzzy number A is a convex normalized fuzzy set A of the real line R
such that

1. it exists exactly one 2o € R p ;(x0) = 1 (0 is called the mean value of A).

2. pj;(z) is piecewise continuous.

Definition 5. [18] A triangular fuzzy number (TFN), A = (a!,a™,a") is a fuzzy number with

the given membership function p ;

(x—a)/(a™ —d) a <z<am
pi(z) =< (r—a*)/(a™ —a*) a™ <z <a¥

0 otherwise.

Definition 6. A triangular fuzzy number A = (a',a™, a") is called a nonnegative number if
and only if a a >0, a™—da >0, a*—a™ > 0anditis a positive number if and only if
a > 0, am—ale, a* —a™ > 0.

Definition 7. The support of a fuzzy set A, S(/i) is the crisp set of all x € X such that .
f5(z) > 0. The (crisp) set of elements that belong to the fuzzy set A at least to the degree o
is called the a-cut set: Ay = {z € X|pz(x) > o}

Definition 8. [10] Suppose § a set of all triangular fuzzy numbers. If A € F, [AL, A%], o € [0, 1]
the a- cut is A. Then, the ranking function of a function R : § — R is:

1
() = %/0 (AL + A%)da

1
If A= (a',a™,a") is a triangular fuzzy number, then R(A) = Z(al +2a™ + a*).
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Definition 9. [10] If A = (a},a™,a*) and B = (b',b™,b*) are two triangular fuzzy numbers,
then order of A and B based on the ranking function R will be:
2% B < R(A) <R(B)
(ii) A= B <= R(A) > R(B)
(iii) A~ B <= R(A) = R(B)
And the features of Linearity will be:

R(kA+ B) = ER(A) + R(B), keR

2.2 Math Operations on Triangular Fuzzy Numbers

IfA= (al, a™, a"*) and B= (bl7 b™, b*) are two triangular fuzzy numbers, then the mathematical
operations on triangular fuzzy numbers will be as follows:

(1) Addition A® B~ (a' 4 b, a™ +b™ a" +bY)
(ii) Subtraction Ao B~ (a' —b%,a™ — b, a* —b')
(iii) Multiplication A® B~ (a'b',a™b™,a"b"), A,B=0
. o A (a',a™, a%) at a™ a* s
(iv) Division 5 = W ~ b Bt ) A,B>0
- ka',ka™, ka%), k>0
(v) Scalar multiplication Vk eR, kA~ ( )
(ka*, ka™, ka'), k<0

3 Fuzzy linear programming problem

A linear programming problem with fuzzy coefficients and variables is called a full fuzzy linear
programming problem. A full-fuzzy linear programming problem [11] with m constraints and
n fuzzy variables are defined by the following model:

Z = max (or min)(CT @ X)
subjectto A® X <, ~,

where é = [éj]nxl7 X = [‘%j]nxh A = [aij]an, i) = [Bj]mxla and dij7 Ej7 Ez € S’, (fj are
non-negative fuzzy numbers and 0 = (0,0, 0).

Definition 10. [11] The fuzzy optimal solution to the full-fuzzy linear programming problem
(P1) will be X = [Z]nx1. will apply if the following conditions apply:
1) Z; is a non-negative fuzzy number,

2) Ao X 2~ S b,
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and 3) If there exist any non-negative fuzzy number such as Y = [§;]nx1, to the point where
A®X Z,~, 5 b, then R(CT@X) > R(CT®Y) for the maximization problem and R(CT @ X) <
SR(C’T ® }N/) for the minimization problem.

Definition 11. [11] Suppose that X = [#;],x1 is the fuzzy optimal solution for full fuzzy
linear problem (P1). If there exist any non-negative fuzzy number such as Y = [Uj]nx1, then
A®Y Z,~, = b, and R(CT ® X) = R(C @Y), then Y = [§;]nx1 is called a fuzzy optimal
solution of (P1). Suppose that ¢; = (c},c}”,c}‘), T = (m},x}",x}‘), aij = (a}j,a?jﬁa%) and
bj = (b}, b, b¥) represents triangular fuzzy numbers. Then, the fuzzy decision parameters and
variables in the model (P1) are converted as follows:

n

7 — max (or min)(Z(c},C}n, ) ® ($]17$;n,$;‘))

j=1
m
subject to Z(agj, api,aii) @ (le,xzn,x;l) L, =, S (by, b, bY) Vi;
j=1
(zj, 27", 2f) =0 V) (n2)

After performing the mathematical operations discussed in Section 2-2, the model (P2) is

converted to the following form:

Jj=1 Jj=1 Jj=1
n n n
subject to Zai]xé,Za;’;x;",ZaZx;‘) L, = (b b DY) Vi
Jj=1 Jj=1 Jj=1
l ~ .
(x5, 2", x5) >0 Y j (P3)

Now, using Nasseri et al’s algorithm [11] and the ranking method, the FFLP (P2) turns into a
precise linear programming problem. The steps in the algorithm are briefly summarized below:
Step 1: Transform full fuzzy objective function using its ranking function

(9{( E?Zl cé-xé-, ?:1 ey, ?:1 c?x?)) into the crisp format.

Step 2: Full fuzzy constraints of the model (P2) using the following ranking functions are:
n
Zaéjxé» <,=>b; Vi
j=1

n

m,_.m _ m .
E ajjxlt <, =,> b; Vi
=1

V]

n
D atalt <,=,>b Vi
j=1

Step 3: The non-negative Fuzzy constraints, that is, (le,x;”,xy) & 0 Vj in the model (P2),
which guarantees the decision variables assessment as non-triangular fuzzy numbers, will be as
follows:

x;ZO, x?—x;zo, x;—x}nZO, Vi
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Therefore, using the above steps, the model (P2) turns into the exact linear programming
problem:

n n
o : L1 m_.m U U
Z = max (or mm)i)‘{( cjry, y il cjxj)
Jj=1 Jj=1 Jj=1

3

T

n
subject to Zaész- <, =>0b Vi
=1

> apalt <, == Vi (P4)
j=1

n
D alay <,=>b Vi
j=1

zéZO, xjm—xézo, x}l—x}nZO, YV

Theorem 1. Each feasible solution in the model (P4) is also a feasible solution in the model
(P3). Argument in [13].

Theorem 2. The optimal solution of the model (P4) is the optimal solution for the model
(P3) Argument in [13].

4 Revenue Efficiency in DEA

The output-oriented DEA model under the assumption of variable return to scale can be used
for calculation of output-oriented technical efficiency and revenue efficiency. Output-oriented
model under the assumption of variable return to scale can be written in the following form:

max o
n
subject to Tio Z Z )\jll?m‘, 1=1,---
j=1

n
PoYo < Z AjYj
j=1
n

ZAjzl

j=1
Aj 20 \Z

Where g is output-oriented technical efficiency of DMU, in the output-oriented DEA model.
To calculate revenue efficiency the following revenue maximisation DEA problem is necessary
to solve [5]:
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max  poy
n
subjectto x;, > Z)\j:cij, i=1,---,m
j=1
n
<D oAy
j=1
A; >0 Yj

Where p, is vector output prices for DMU,. The overall revenue efficiency is defined as the

ratio of observed revenue to maximum revenue for the DMU, [5]:

ot = poyo/poy:

where y* is an optimal solution for model [Revenue].

4.1 Single output case

In this section, we deal with n DMUs with m inputs & = (21, 2, - , ;) to produce one output
of y(> 0). For a DMU,(o = 1,--- ,n), let the inputs and output be £, = (10, 20, ** , Tmo)
and y, (> 0)respectively, and the unit price of output y, be p, (> 0).

Between the two efficiency measures (technical efficiency ¢* and revenue efficiency o*) we
have the following theorem.

Theorem 3. For the single output case, o* = 1/¢p*.

Proof. Let us denote y as ¢y, in [Revenue] and change the variable from y to ¢y,. Then, noting
Yo > 0 and p, > 0, [Revenue| becomes:

max  Polo
n
subjectto x;, > Z)‘jxij7 i=1,---,m
j=1
n
CYo <Ay,
j=1
Aj 20 vj

This program is equivalent to [CCR] and its optimal objective value is ¢©*p,y,. Thus we have

* poyo _ i

(07

B ©*DoYo P~
O

Definition 12. (Allocative efficiency): The allocative efficiency v* of DMU, is defined as the

o

ratio of revenue efficiency to technical efficiency, ie, v* = o The allocative efficiency v* is less

than or equal to one, and DMU, is called allocatively efficient when v* = 1 holds
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4.2 General case

Here we observe a more general case where we have m inputs x = (z1, z2, -+ ,Z,,) and s outputs
y=(y1,Y2,  * ,Ys). Suppose that DMUs A and B have the same amount of inputs and outputs,
ie, g =xp and y4 = yp. Assume further that the unit price of DMU A is twice that of DMU

B for each output, ie, pa = 2pp. Under these assumptions, we have the following theorem:
Theorem 4. Both DMUs A and B have the same price (overall) and allocative efficiencies.

Proof. Since DMUs A and B have the same inputs and outputs, they have the same technical
efficiency, ie, % = ¢%.

The revenue efficiency of DMU A (or DMU B) can be obtained by solving the following
LP:

max pay(= 2ppy)

n
subjectto x;a(=x;5) > Z)\jazij, i=1,---,m
j=1
n
yrgz)‘jyrj, r=1,-s
j=1
Aj 20 Vi

Apparently, DMUs A and B have the same optimal solution (outputs) y% = y%, and hence the

same revenue efficiency, since we have:

Q) =PaYa/Payis = 20BYB/2PBYE = PBYB/PBYE = Q5.
O

They also have the same allocative efficiency by definition 1. This also sounds very strange,
since DMUs A and B have the same revenue and allocative efficiencies even though the price
of DMU B is half that of DMU A.

4.3 A new scheme

The previous two sections reveal the shortcomings and irrationality of the revenue and allocative
efficiencies proposed thus far.
These shortcomings are caused by the structure of the supposed production possibility set
P as defined by:
P = {(:z:,y)}:z: >X\N y<Y\ A> 0}

The production possibility set P is defined only on the basis of the technical factors X =
(1, ,2p) ER™™ and Y = (y1, -+ ,yn) € R**™ and has no concern with the prices of the
outputs P = (p1,- - ,pn). Banihashemi and Tohidi [2] define a set of new production possibility
set based on revenue as follows:
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Py ={(z,9)|z > X\, §< YA A>0}

where Y = (41, -+ ,¥n) and g; assuming that the matrices P and Y are non-negative, and all
inputs are revenue-oriented. Another assumption is that the elements g;; = (pi;, yi;) V(4. j) are
in homogeneous units, e.g., $, so that the multiplication of these elements is significant. Based
on the definition of the set of new possible generation P,, the new technical efficiency ¢* is

given as the optimal solution to the linear programming problem:

P" =max @

subjectto z, > XA\

The new revenue efficiency a* is as follows:
o — —x
a* = ef,/ey:

where e € R™, is a row vector with the elements 1 and ¥} is the solution to the linear program-

ming problem below:

[Nrevenue] max ej

subjectto x, > X\

5 Network Data Envelopment Analysis Based on SBM Model

The common DEA models which measure the relative efficiency of multiple input/ output
decision-maker units may experience drawbacks such as neglecting intermediate products or
linked activities. In this section, the network data envelopment analysis and the parameters of
its production probability set are discussed.

Suppose n is the decision maker available in Section K. my and ry are the numbers of inputs
and outputs in the k" section. The link from division k to division A is represented by (h, k) and
the set of all links is shown by L. The observed data is {:102C eERM™Yj=1,--- ,nk=1,--- | K),
(e RFMi=1, mk=1- K)and {z{"" € R{""}(j =1, ,n,(k,h) € L).

Thus, the production possibility set in network data envelopement analysis will be:
pP= {(xk, y", z(h’k))|x”C > XENE gk < yRAR UR) — S (R) Nk (asoutputs k), AL
= 2BPM N (asinputs h), A > O}

Assume that the following model (with input nature) has a variable returns to scale and DMU,,
(o =1,---,n) unit under evaluation. Since the SBM model needs to have positive data, this

paper assumes that all data are positive.
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K 1 &k Gk—
oo e |5

k=1 i=1 Tio

subjectto % = X*X\F 4 sF—

ygc _ Yk)\k o Sk+

Ne B k= skt >0

2h) = (BINE ((k, 1)), (@)
D = SR (10, 1).
or

2R = S (BRNR (Y(k, h)), (D)

Where z Where z(+:") = (z%k’h),--~ 727(Lk7h)) € Riomxn Xk — (gh ... gky ¢ pmixn_ gk —
(yF, -+ yF) € Rm=>xn k= (sF*) are slacks vectors of the input (output). Given the link

constraints, there are several choices that can be made in two possible ways:

(a) In the first case, the values of fixed intermediate current are taken into account.

2B = JEMNE (Y(kRY),  (a)
2(ER) — H )\ (v (k1))

(b)In the second case, the values of the average flow in the link can be freely reduced or
increased.

BRI = S (BRND (Y(k, ), (b)

6 Revenue Efficiency in Network DEA

In this section we deal New Network Revenue Efficiency (NNRE) on Network Slack Based
Measure (NSBM) that prices play a role in the PPS on output. The production possibility set
based on price for the network data envelopment analysis is [2]:

b, = {(xkvyka f(k’h))|$k > XFNE gF < vRAE zRR) = Z(RR AR (g5 outputs k), 2R

= z(k’h))\h(as inputsh), e\ =1, A > O}

where
vk —k —k —k k k k k
Y® = (yla"' 7yn)7 Y; = (p1jy1j7"' 7prk_jyrkj)
—(k,h) _ (=(k,h) =(k,h ~(ksh) _ ( k _(kh) k (kh)
5 )_(Zl ,...’Zgl )), z; —(1j21j s i P )

Based on this set, a new production possibility, @**, is obtained from the following linear
programming problem:
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K
[INNRE] max Y g+ zkh
k=1 h

subject to xlg > XFENE k=1, K
gt < YR =1 K
z{kh) = ZRM NP ((k, ) (a)
ng,h) _ Z(k,h))\k (V(k, )),
or
gERMNE = Z RN (W (K, b)) (b)  (P5)
eNb =1,
Mo >0
and
K K
@*k _ Z g;k + Z ng,h)/ Z g:k + Z Z;(k’h)
k=1 h k=1 h

Where e € R™, a row vector with elements, equals 1 and ¢, Z} are optimal solutions for model
(P5).

7 Proposed Fuzzy Revenue Efficiency Method in Fully Fuzzy Network Data
Analysis

In the real world, input-output data and their corresponding prices are not accurately observed
and may be available in inappropriate forms such as fuzzy numbers, in particular triangular
fuzzy numbers. Many researchers investigated the revenue efficiency with fuzzy and interme-
diate data. In these studies only, the decision parameters are considered as fuzzy and the
decision variables are precise quantifiers. However, in this paper, we use full-fuzzy models of
network data envelopment analysis to measure the revenue efficiency in a fully fuzzy environ-
ment in which all decision-making parameters and variables are represented by triangular fuzzy

numbers.

To measure fuzzy revenue efficiency in network data envelopment analysis, we extend the
model (4) to a completely fuzzy environment. Suppose that the decision maker unit is available
in Section K. my and ri are the number of fuzzy inputs and outputs in the k-section. The link
from section k to part h is represented by (k,h) and the set of all links with L. The observed

fuzzy data j=1,--- ,n, k=1,--- K &k, gk 2"

and ﬁ? respectively contain the input and
Fuzzy outputs in each section, fuzzy link activities from section k to section h as well as the
revenue of the fuzzy input units in each section. If these data are triangular fuzzy numbers, we

will have:
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‘%";:(m‘] ) "'777« ) ]k)v ]:]_’
yf (y] 7yj 7y] )a j:l’
~k Lk mk -
5 = (05" 0 "), j=1,
gj(_lc,h) _ (z§ (k, h)’z mh) ( my, P

According to the above, the model (P5) will become a fully fuzzy model as follows:

[FFNNRE)]

K
min Z Tl Z F(k:h)
k=1 3

n
: ~k vk o YK
subjectto Iy = Z j @ A7,

56 Zgw " g 3k,

Zh) ~ Zé;k’h) ® A",
or

Z (k}L)®)\kNZZ(kh)®)\h
Jj=1
SR~

j=1
o
N, X0

V(k, h)

V(k, h)

V4, k

The model (P6) is a fuzzy revenue envelopment model in the Fuzzy Network Data Envelopment

Analysis. After replacing the triangular fuzzy variables and parameters in model (P6) and using

mathematical operations on triangular fuzzy numbers and steps of the Nasseri algorithm, the

full-fuzzy linear programming model (P6) becomes the crisp linear programming;:

Zyzhrzzz (kh)+2(Z—mk Zm,(k}L>+iyu,k+Zzu,(k,h)
k=1 h

n
subject to xé’k > ZX;-’k/\é-’k,
=1

n
m,k m,ky 1Lk
Lo ZZXJ )‘j’
j=1
n
w,k w,ky 1,k
Tyt > XA,

k=1, K
k=1, K
k=1, K
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y““SZy;’k/\?’“, k=1 K (P7)
j=1
R b= K
j=1
RS f= Lo K
j=1
_ _L(ksh) \ Lk
zhikih) — sz< )AJ— , V(k,h)
j=1
Fmu(kh) — Z ;,;n’(k’hu;w, V(k,h)
j=1
_ —u,(k,h) \u,
ool = 3 2 o \uk, V(k, h)
j=1
SRS SELUVE e @
j—l
J(k,h) _ Z j m,(k,h) Am h \V/(k', h)
J(k,h) Z 2 w,(k,h) AU h \V/(k', h)
or
Z 2; (k, h))\l k_ ; (K, h))\l h V(k, h)
j=1 Jj=1
_m,(k,h) \m, k _m,(k,h) ym, h
Sty zm R\ V(k, h) (b)
j=1 j=1
- —u,(k,h)yu,k = —u,(k,h) uh
$ 0 gl ik G gk . (k. h)
i=1 J=1

ZA“ 1, k=1,---,K

NE
S
E

I

=
]
>/
=3
£

Jj=1 Jj=1

AZF >0, AR —ALE >, Ak — x.’”“ >0 Vi, k
1k _m.,k _l k _u,k —mk .
=0, g =gt >0, g0 =yt >0 Vi, k
_l,k —m,k _l k —u,k —m,k .
=20,z — >0,z -2 20 NN

Theorem 5. Model (P7) is a feasible model.

Proof. This model has a feasible solution as follows :
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Ak =1, AF =0, j#o
Ak =1, Am =0, j#o
Ak =1, )\“k—O j#o
ALh — 1, Agh_o, j#o
Amh =1, AP =0, j#o
Ak =1, AWM =0, j#o

d*z%ky =gk gk =gub
And with considering (b)

s (k,h) _ 5l,(k,h) zm,(kh) _ Zm,(k, h) su,(kh) _ zu,(k,h)
2o = %o 2o 2o = %o

=z,

O

Theorem 6. The optimal solution for the model (P7) will be a model optimization solution
(P6). The proof of this is similar to the proof of Theorem 1.

Definition 13. The fuzzy cost efficiency of the i DMU in the FFDEA is defined as the ratio
of the minimum fuzzy cost to the observed fuzzy cost of DMU;:

PR SRE LD D
Qi ~*(kh)
Tha T OX, 5
Lk (kb _m,k Zm, (kb _u,k _u,(k,h
(Zkl +E ( )Zklm +E ( )Ekl i +Z Z'( ))
_1 k* _l k:}* _m * - k,h)* _uk* —u,(k,h)*
( Ii(l ik +Z ( L) kl 7 * +Z m( )7 kl 1 +Z U( >)

_lk _lkh —mk: _ k,h K —u,k —u,(k,h
( POAIE D DAL DA TACUED S DAL LD S >
- 7'u.k* _u,(k,h)* 7mk>k kh* Jk* _l,(k,h)*
S B+, E < LD DAINE D DA DS AED DAP A

where (g’f, 7zjzm k*7 yzu kx V’L, k, h) (zzl-’(k’h)*, z;m,(k,h)*’ 2?7(k7h)*)

tained from model (p6).

are the optimal solutions ob-

Definition 14. i*» DMU in the network data envelopment analysis is called Fuzzy Cost Effi-
ciency if the observed Fuzzy Cost and the minimum Fuzzy Cost equal DMU;, that is,

K K
PIEDDLREED D DA
k=1 h k=1 h

SR R(S 50 Y50

tﬁ\z

x(it o

8 Numerical example

In this section, an illustrative example of electric power companies are presented for describing
network DEA. As we know, the vertically integrated electric power companies consist of sev-

eral divisions such as generation, transmission and distribution. For illustrative purpose, ten
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vertically integrated electric power companies in the U.S in 1994 [16]. The inputs, outputs and

links are as follows:

Generation (Divl):

Inputl = Labor input (number of employees)
Transmission (Div2):

Input2 = Labor input (number of employees)

Output2 = Electric power sold to large customers

Distribution (Div3):

Input3 = Labor input (number of employees)

Output3 = Electric power sold to small customers

Link (1-2)
mission Devision)

Link (2-3)

= Electric power generated (output from Generation Devision and input to Trans-

= Electric power sent (output from Transmission Devision and input to Distribution

Devision) Here, it is assumed that the intermediate flow rates are able to rise or fall freely in the

link, so that the proposed model for evaluating the fuzzy revenue efficiency will be as follows:

K K

max i Zy““—kZzl(kh +2(Z

k=1 k=1

Z zm,(k, h)) i i gk 4 Z st (k,h)
k=1 h

subject to bk > ZX;’kAE’k, k=1, K
j=1
m.k = m,k\m,k
AP DIP eV =1 K
j=1
DEED IRV S
j=1
yl,k? < glivaé’k7 k = 17 5K
Jj=1
gt <y g, k=1, K
j=1
7<) BN =l K
j=1
Z L (k, h))\l k Z L(kh) \Lh V(k, h)
“j J ’
j=1
2;n (K, h))\m k Z Z;jrb,(k,h))\;n,h7 V(k, h)
j=1 7=l
Zu(kh))\uk Z 2 kh))\uh Y(k,h)
j=1
W0, a0, A s viok
,z k _m,k J k ~uk  —myk ]
i >0, gt =y >0, g =y >0, Vi, k
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J

h(kh) >0

_m,(k,h)
) Zj -

J

zl',(k,h) >0 Z%(k’h) B 57,"7(’“”“‘) >0, Vikh
- b ] ] P b b b

Table 1 contains the fuzzy inputs, fuzzy outputs, and fuzzy revenues of each division.

The revenue of the input and output links is also given in Table 2.

Generation

| Fawer

—
| Transmitte
Pawer

Distribution

Sales to Large
Customers

Sales to Small
Customers

Figure 2: Vertically integrated electric power companies

Table 1: Fuzzy inputs, fuzzy outputs, fuzzy input cost in three divisions

Divl Div2 Div3

DMU Inputl Input2 Output3 P2 Input3 Output3 P3

A 1(0.836,0.838,0.840) | (0.275,0.277,0.279) | (0.876,0.879,0.881) |  (896,900,903) | (0.960,0.962,0.965) | (0.335,0.337,0.340) | (685,687,689)
B |(1.231,1.233,1.235) | (0.130,0.132,0.133) | (0.535,0.538,0.540) | (737,739,742) | (0.440,0.443,0.445) | (0.15,0.18,0.20) (190,194,196)
C | (0.318,0.321,0.323) | (0.042,0.045,0.048) | (0.909,0.911,0.914) | (138,142,145) | (0.482,0.485,0.487) | (0.195,0.198,0.200) | (280,285,287)
D |(1.480.1.483,1.485) | (0.110,0.111,0.113) | (0.55,0.57,,0.59) (860,863,865) | (0.465,0,467,0.470) | (0.488,0.491,0.495) | (398,401,404)
E (1.590,1.592,1.595) | (0.205,0.208,0.211) | (1.085,1.086,1.089) (305,307,310) (1.070,1.073,1.075) | (0.370,0.372,0.375) (175,179,182)
F (0.76,0.79,0.81) | (0.136,0.139,0.141) | (0.720,0.722,0.724) | (1198,1200,1203) | (0.543,0.545,0.548) | (0.250,0.253,0.255) | (1052,1054,1056)
G ](0.449,0.451,0.454) | (0.073,0.075,0.077) | (0.507,0.509,0.511) | (268,270,273) | (0.365,0.366,0.368) | (0.238,0.241,0.244) | (390,394,396)
H |(0.405,0.408,0.410) | (0.072,0.074,0.076) | (0.617,0.619,0.621) | (985,987,990) | (0.226,0.229,0.231) | (0.095,0.097,0.099) | (272,276,280)
T | (1.860,1.864,1.865) | (0.059,0.061,0.063) | (1.021,1.023,1.025) | (354,356,358) | (0.689,0.691,0.693) | (0.35,0.38,0.40) | (838,840,843)
J (1.220,1.222,1.225) | (0.147,0.149,0.151) | (0.765,0.769,0.771) (467,470,472) (0.336,0.337,0.339) | (0.175,0.178,0.180) (159,161,164)

The above model is solved using GAMS software and the results are shown in Table 3.

As Table 3 shows none of the decision making units are revenue efficiency. Indeed, one of

the major drawbacks of the network models is that the full efficiency cannot be achieved in

most of the cases. To solve this issue, efficiency of each unit can be devided to the maximum

efficiency, resulting to deriving the relative efficiency (Table 3, column 4). In this case, unit H

is the relative revenue efficiency and units A, C, D, F and G have the relative revenue efficiency

more than half.
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Table 2: Fuzzy unit input link revenue

Link

Link12 Lpl Link23 Lp2
(0.891,0.894,0.897) | (945,947,950) (0.360,0.362,0.365) | (1031,1034,1036)
(0.675,0.678,0.780) | (680,682,685) (0.185,0.188,0.190) | (986,989,992)
(0.835,0.836,0.838) | (700,705,708) (0.205,0.207,0.210) | (750,752,755)
(0.865,0.869,0.872) | (1125,1128,1130) | (0.514,0.516,0.520) | (1109,1111,1113)
(0.690,0.693,0.695) | (490,492,495) (0.405,0.407,0.410) | (850,852,855)
(0.961,0.966,0.970) | (665,670,673) (0.265,0.269,0.273) | (640,642,645)
(0.645,0.647,0.650) | (1085,1087,1090) | (0.255,0.257,0.259) | (820,824,826)
(0.752,0.756,0.760) | (924,926,930) (0.101,0.103,0.105) | (970,973,975)
(1.189,1.191,1.194) | (630,634,638) (0.400,0.402,0.405) | (910,913,915)
(0.790,0.792,0.795) | (775,779,782) (0.185,0.187,0.190) | (645,647,650)

Table 3: Evaluating and ranking revenue efficiency

DMUs a*k R(a%) Relative Efficiency | Rank
A (0.433,.0.648,0.734) 0.648 0.733 4
B (0.130,0.331,0.450) 0.331 0.374 8
C (0.435,0.680,0.872) 0.680 0.769 3
D (0.435,0.553,0.754) 0.553 0.625 6
E (0.125,0.263,0.365) 0.263 0.297 10
F (0.534,0.709,0.845) 0.709 0.802 2
G (0.456,0.647,0.745) 0.647 0.732 )
H (0.534,0.884,0.915) 0.884 1 1
I (0.234,0.403,0.478) | 0.403 0.456 7
J (0.25,0.33,0.56) 0.33 0.373 9

9 Conclusion

Given the importance of revenue efficiency in the management and economic sectors as well
as inaccuracies in real-world data, this paper proposes a new idea of the extension of classical
NNRE model to fully fuzzy environments for dealing with the practical situations more realisti-
cally. A FFNNRE model has been developed where input—output data and their corresponding
prices are taken in triangular membership forms. A method based on ranking function ap-
proach is presented to transform FFNNRE model into the crisp linear programming problem.
The final FFNNRE measures are then defined as TFNs. Finally, using the presented ranking

function in the article, the DMUs are ranked based on revenue efficiency.

Since revenue efficiency sensitivity analysis helps the manager or decision maker to modify

the amount of outputs under evaluation to maximize revenue . Therefore, future work can
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include sensitivity analysis of performance, as well as finding the appropriate stability area to

maintain revenue efficiency in precise and imprecise network data envelopment analysis.
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